

Authorized Distributors collective trade links pvt. ltd.

17, Aryan Corporate Park, Nr. Thaltej Railway Crossing, Thaltej, Ahmedabad-380054. Phone: +91-79-26474700 – 50 Email: <u>sales@collectivebearings.com</u>

Web: www.collectivebearings.com

LinkedIn: http://www.linkedin.com/company/collective-bearings

Non-excited operation type brakes

BXW model:	For both braking and holding
BXL model:	For braking
BXH model:	For holding
BXR model:	For holding
	(Available by special order)
457 model:	For braking
	(Available by special order)
458 model:	For both Braking and holding

Brake torque [N·m]

(0.1	1.0	10	100	1000
BXW				1	
BXL			1	1	
BXH			1		
BXR		l l			
457			1		
458					

Selection

First, select the model of the spring actuated type brakes in accordance with thedrive system and the intended use. For a drive system, select the appropriatemodel by considering the adaptability for general-purpose motor, geared motor, servo motor and stepping motor. For a device of general industrial machinery, select the appropriate model in accordance with the intended use, for braking or holding (emergency braking included).

2 After selecting the model of brakes, narrow the selection even more by specifying the mounting method, stator mounting or flange mounting.

If torque adjustability, a release lever or dust covers (dust prevention) are required, select the appropriate model according to the characteristics.

4 After selecting the model of brake, determine the type from the dimension specification table and bore diameter table.

5 After the type of brake is determined, reconfirm if the rated torque, maximum rpm, dimension, bore diameter, amount of work (operation frequency and allowable amount of work) or exciting voltage corresponds to the use conditions.

Model list

Constructions
 Construction
 Construction

	Spring actuated type brakes								
	Model	BXW	BXL	BXH	BXR	457	458		
	Appearance	0	03	0	Ó	0)	0		
De	escriptive page	P103~106	P107~109	P111~113	P115~116	P117~118	P119~122		
Þ	General-purpose motor			0	0				
dap	Geared motor	•		0	0		•		
tab	Stepping motor	•	0		•	0	0		
ility	Servo motor	•	0	•	•	0	0		
	General industrial machinery	•	•	•	•	•	•		
	Braking	•	•			•	•		
0	Holding	•		•	•	0	•		
har	Panic braking	0	0	0	0	0	0		
act	Slim type				•				
eris	Torque adjustability						•		
tic	Release lever	\bigtriangleup	\bigtriangleup	\bigtriangleup			•		
	Dust cover						•		
	Quietness		\bigtriangleup	\bigtriangleup					
Meth of fixa	Stator mounting	•	•	•	•				
tion	Flange mounting	•				•	•		
Env	ironmental responsiveness	•	•	•	0				
Ava	ilable by special order								

Non-excited brake for braking purpose

It stops the motion condition of rotating body or moving body in the active condition of the brake. Non-excited brakes operate when electricity is off.

Non-excited brake for holding purpose

It sustains the actual static condition of rotating body or moving body to maintain. As well as the brake for braking purpose, the brake operates when electricity is off.

Mounting types for non-excited brakes

There are three types of mounting, stator mounting and plate (flange) mounting as below, and the type available for both. Select the appropriate brake type in accordance with the use conditions. Due to the magnetic coil used for the brake operation, the stator generates heat by applying current. The stator mounting type has the advantage that the heat of the magnetic coil is released through the mounting surface. The plate (flange) mounted type has the rotor hub which rotates together with the rotating shaft of the machine or device, on the mounting surface side, therefore the advantage is that the length measurement of the rotating shaft for the mounting surface can be shortened.

Stator mounting type

Plate (flange) mounting type

Torque adjustability

Brake torgue adjustment can be performed with the highperformance 458 model. By adjusting torque, fine control of the stop position or stop distance of the machine or device can be performed. The impact of braking can also be reduced. Torque adjustment can be done easily by turning the torque adjustment ring.

Release lever

Non-excited brakes operate without energization. By using a release lever when electricity is off, the brake of the rotating shaft of the machine or device can be released. By using the brake release lever one can position rotating shaft or release the brake in case of an emergency.

When braked

When released

Basic Structure

BXW model BXW model without a lease lever Stator Armature Rotor Hexagon socket setscrew

Rotor hub

Plate

Hexagon socket flush bolt

Anti-noise spring

Armature

Rotor

Plate

Rotor hub

Auxiliary spring

Hexagon nut

BXW model BXW model with a lease lever

BXH model

BXR model

Lead wire

Torque

Lead wire

spring

BXL model

Stato

Coil

Stud bolt

Rotor spring

Torque spring

458 model

• 457 model

Principle of operation

BXW model (with a release lever)

The rotor is mounted on the shaft through the rotor hub, and the stator or plate is fixed on the wall surface. When the coil is not energized, the armature compression springs sandwich the rotor between the armature and plate. The friction force betweent the rotor armature hub and plate does not allow for shaft rotation. At this time, a certain amount of air gap is kept between the stator and armature. When applying current through the coil, the magnetic flux is generated, and the magnetic circuit is formed between the stator and armature. The stator surpasses the torque spring compression force to suction the armature. At the same time, the rotor becomes free and the shaft is released. If there is a release lever, it is possible to move the armature to the stator side manually under condition of no energization. By using the release lever, the rotor becomes free and the shaft is released. The lever returns to the original position by releasing.

When released

BXL • BXH • BXR model

The rotor is mounted on the shaft through the rotor hub, and the stator or plate is fixed on the wall surface. When the coil is not energized, the armature compression springs sandwich the rotor between the armature and plate. The friction force betweent the rotor armature hub and plate does not allow for shaft rotation. At this time, a certain amount of air gap is kept between the stator and armature. When applying current through the coil, the stator surpasses the torque spring compression force to suction the armature. At the same time, the rotor becomes free and the shaft is released. If there is no energization such as electrical power failure, the armature can be pushed to the stator side by tightening the bolt. At the same time, the rotor becomes free and the shaft is released.

Air gap

457 • 458 model

The rotor is mounted on the shaft through the rotor hub, and the stator or plate is fixed on the wall surface. When the coil is not energized, the armature compression springs sandwich the rotor between the armature and plate. The friction force betweent the rotor armature hub and plate does not allow for shaft rotation. At this time, a certain amount of air gap is kept between the stator and armature. When applying current through the coil, the stator surpasses the torque spring compression force to suction the armature. At the same time, the rotor becomes free and the shaft is released. For the 458 model, the armature can be pushed to the stator side by pulling the lever toward the stator side even when there is no energization such as electrical power failure. At the same time, the rotor becomes free and the shaft is released.

BXW model

Choice of two types, braking or holding use (The holding type has two times the torque of braking type.)

In the same dimensions, the L type for use in braking and H type for use in holding are available in accordance with the intended purpose.

100 % of the rated torque from the initial period

A test operation is not required. Torque satisfies rated value right from the beginning of use.

Long operating time

Due to the special friction material with high abrasion resistance, it stands long use.

Low noise

The anti-noise spring reduces a clattering sound generated by fine vibration during rotations.

Internal and external mounting of stator

A stator used as a heat source can be mounted either on the inside or outside direction in accordance with the intended use.

Adapted to the RoHS

Adapted to the Restriction of Hazardous Substances that bans the use of 6 substances such as mercury or lead.

Brake type	BXW-D-DL	BXW-🗆-🔲H
Use application	For braking	For holdiing
Brake torque [N·m]	0.12~2.00	0.24~4.00
Operational temp. $[^{\circ}C]$	-10~+40	-10~+40
Backlash	Little	Little

Speci	fic	atio	n 🧲	BXV	V-🗌-[_ L	(F	or brakin	g)					
Model	Size	Static friction torque Ts [N·m]	Voltage [V]	Coil (a _{Wattage} [W]	t20°C) Amperage [A]	Resistance [Ω]	Heat- resistance class	Max. rotation speed [min ⁻¹]	Rotating part moment of inertia J [kg·m ²]	Allowable braking work rate Pba ℓ [W]	Total braking work ET [J]	Armature suction time ta [s]	Armature release time t _{ar} [s]	Mass [kg]
BXW-01-10L	01	0.12	12 24 45 90 180	5.0 5.0 5.0 5.0 5.0	0.417 0.208 0.111 0.056 0.028	28.8 115 405 1622 6486	F F F F	5000	0.6×10 ⁻⁶	2.5	1.5×10 ⁶	0.008	0.015	0.2
BXW-02-10L BXW-02-12L	02	0.25	12 24 45 90 180	6.6 6.6 6.6 6.6 6.6	0.550 0.275 0.147 0.073 0.037	21.8 87.3 307 1228 4912	F F F F	5000	1.9×10 ⁻⁶	5.0	3.0×10 ^₅	0.008	0.015	0.3
BXW-03-10L BXW-03-12L	03	0.50	12 24 45 90 180	9.0 9.0 8.2 8.2 8.2	0.750 0.375 0.182 0.091 0.046	16.0 64.0 247 988 3954	F F F F	5000	3.8×10 ^{−6}	10.0	4.5×10 ⁶	0.025	0.025	0.4
BXW-04-10L BXW-04-12L	04	1.00	12 24 45 90 180	11.5 11.5 10.0 10.0 10.0	0.958 0.479 0.222 0.111 0.056	12.5 50.1 203 810 3241	F F F F	5000	12.0×10 ⁻⁶	20.0	7.0×10 ⁶	0.030	0.030	0.6
BXW-05-10L BXW-05-12L	05	2.00	12 24 45 90 180	13.0 13.0 13.0 13.0 13.0	1.083 0.542 0.289 0.144 0.072	11.1 44.3 156 623 2492	F F F F	5000	23.0×10 ⁻⁶	30.0	12.0×10 ⁶	0.035	0.035	0.8

%The indicated values of the armature suction time and release time are in the case of direct-current side switching.
%The release lever is available on request.

The voltage specification 12V and 180V are available on request.

Dimensions

																										Unit [mm]
0:		Radial dimensions												Axial direction dimensions						ns	Bore dimensions			CAD		
Size	Α	В	С	D	Е	S	V	R	F	W	m	0	Ρ	Q	U	G	I	J	Κ	L	Ν	а	d	b	t	file No.
01	37	30	18	125	120	6	30	30	10	AWG26	МЗ	_	_	_	_	15	50	22.5	30	9	22.5	0 10	5	_	_	BXW10_1
01	57	52	10	10.0	12.0	0	5.0	5.0	10	AWU20	1015					4.5	5.0	22.5	52	3	22.5	0.10	6			DAM/10-1
02	47	40	21	16.0	14.5	7	34	34	12	AWG26	МЗ	٩	50	13	51	60	55	19.2	32	12	20.0	0 10	6	_	_	BXW10(12)-2
02	-1	40	21	10.0	14.5	'	0.4	0.4	12	ATTULU	1010	5	50	10	51	0.0	0.0	10.2	52	12	20.0	0.10	7			DAM 10(12) 2
03	56	48	24	19.0	17.0	7	3.4	3.4	14	AWG26	М3	11	60	15	60	6.0	6.0	19.9	32	12	20.0	0.15	8	—	—	BXW10(12)-3
04	65	58	35	24.0	22.0	7	3.4	3.4	18	AWG22	M4	12	70	15	70	7.0	7.0	19.9	34	14	21.0	0.15	10	3	1.2	BXW10(12)-4
05	75	66	36	28.0	26.5	9	4.5	4.5	22	AWG22	M4	14	80	20	80	7.0	7.0	22.1	36	14	21.5	0.15	12	4	1.5	BXW10(12)-5

There is no release lever option for the size #01.

*CAD data has 2 types of shapes; with and without a release lever. CAD file No. 12 indicates a shape with a release lever.

Speci	fic	atio	n 🧲	BX\	V-🗌-[H	(F	or holdin	g)					
		Static friction		Coil (a	t20°C)		Heat	Max. rotation	Rotating part	Allowable	Total braking	Armature	Armature	Maga
Model	Size	torque Ts [N·m]	Voltage [V]	Wattage [W]	Amperage [A]	Resistance [Ω]	resistance class	speed [min ⁻¹]	moment of inertia J [kg⋅m²]	work rate	work ET [J]	suction time ta [s]	release time t _{ar} [s]	[kg]
			12	5.0	0.417	28.8	F							
			24	5.0	0.208	115	F	=						
BXW-01-10H	01	0.24	45	5.0	0.111	405	F	5000	0.6×10 ⁻⁶	0.5	0.2×10 ⁶	0.010	0.010	0.2
			90	5.0	0.056	1622	F							
			180	5.0	0.028	6486	F							
			12	6.6	0.550	21.8	F							
BXW 02 10H			24	6.6	0.275	87.3	F			6 1.0				0.3
BXW-02-10H	02	0.50	45	6.6	0.147	307	F	5000	1.9×10 ⁻⁶		0.3×10 ⁶	0.010	0.010	
DXW-02-1211			90	6.6	0.073	1228	F							
			180	6.6	0.037	4912	F							
			12	9.0	0.750	16.0	F							
BXW-03-10H			24	9.0	0.375	64.0	F		3.8×10 ⁻⁶	2.0				0.4
BXW-03-10H	03	1.00	45	8.2	0.182	247	F	5000			0.5×10 ⁶	0.035	0.020	
BAN 00 ILII			90	8.2	0.091	988	F							
			180	8.2	0.046	3954	F							
			12	11.5	0.958	12.5	F							
BXW-04-10H			24	11.5	0.479	50.1	F							
BXW-04-10H	04	2.00	45	10.0	0.222	203	F	5000	12.0×10 ⁻⁶	4.0	1.0×10 ⁶	0.040	0.025	0.6
			90	10.0	0.111	810	F							
			180	10.0	0.056	3241	F							
			12	13.0	1.083	11.1	F							
BXW-05-10H			24	13.0	0.542	44.3	F	= = 5000 23.0 =						0.8
BXW-05-10H 0	05	4.00	45	13.0	0.289	156	F		23.0×10 ⁻⁶	6.0	2.0×10 ⁶	0.045	0.030	
			90	13.0	0.144	623	F							
			180	13.0	0.072	2492	F							

%The indicated values of the armature suction time and release time are in the case of direct-current side switching.

The release lever is available on request. *The voltage specification 12V and 180V are available on request.

Non-excited operation type brakes

Structural instructions

Handling instructions

Brake body

Many soft materials are used for the electromagnetic brake. Do not bang or drop. Any unreasonable force may cause flaw or deformation.

Lead wire

Do not pull the brake lead wire or bend at a sharp angle. Also, do not dangle by holding the lead wire.

Frictional surface

It is a dry-type brake that the friction surface must be used in a dry state. Make sure not to apply any water or oil to the friction surface.

Mounting instructions

Mounting direction

For the BXW model, the stator can be mounted either on the inside direction (stator mounting) or outside direction (plate mounting). Select the mounting direction in accordance with the intended use.

Fixation of the rotor hub

By avoiding contact with the armature, fix the rotor hub for the shaft with a hexagon socket setscrew. When applying a thread adhesive, make sure that the adhesive does not come into contact with the rotor hub surface.

Bolt and screw

Apply a slack preventive such as thread adhesive to the bolt and the screw used for the brake mounting.

Shaft

The tolerance of the shaft should be h7 class (JIS B 0401). Note that as the hardness of the material used for the shaft increases, the effect of the hexagon socket setscrew decreases.

Accuracy of the brake mounting surface

The concentricity between the inlay part and shaft (X) and the squareness between the brake mounting surface and shaft (Y) must be below the permissible value.

BXW concentricity and squareness tolerances

Cine	Concentricity (X)	Squareness (Y)
Size	T.I.R. [mm]	T.I.R. [mm]
01	0.05	0.02
02	0.05	0.02
03	0.10	0.02
04	0.10	0.02
05	0.10	0.02

Instruction for use

Environment

Due to the dry-type brake, if any oil or water content is applied on the frictional surface, the torque decreases. If there is a possibility of contamination of oil or water, use a protective cover.

Environmental temperature

The allowable operating temperature is -10° C ~ $+40^{\circ}$ C. If operational temperature is not within the range, contact us.

Power supply

For the BXW model, single phase of commercially available alternating current 100V or 200V can be used as full-wave or half-wave rectification. Perform the selection in accordance with the intended use. For the recommended power supply, refer to the page of "recommended power supply and protective device".

Power supply voltage variation

Extreme fluctuation of the supply voltage may cause performance degradation of the brake. Suppress the variation within $\pm\,10\%$ of the rated voltage.

Air gap adjustment

For the BXW model, the air gap adjustment is not required. The brake gap adjustment has been done before shipping.

Protective device

When using the power supply with no protective device, connect the recommended protective device parallel to the brake.

Stator mounting

Plate mounting

Recommended power supply and protective device

Model	Rectification method	Frequency [Hz]	AC input voltage [V]	DC output voltage*1 [V]	Recommended protective device *3 (varistor)
BE-05	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K
DEM DE	Single-phase full-wave	50/60	AC100	DC90	NVD07SCD220 or TNR7V221K
DEIVI-2F	Single-phase full-wave	50/60	AC200	DC180	NVD07SCD470 or TNR7V471K
	Single-phase half-wave	50/60	AC100	DC45	NVD07SCD220 or TNR7V221K
DEIVI-20	Single-phase half-wave	50/60	AC200	DC90	NVD07SCD470 or TNR7V471K
BEM-4H	Single-phase half-wave	50/60	AC400	DC180	NVD10SCD820 or TNR10V821K

*1 indicates the value when applying current to the brake coil.
 *2 power supply used for DC24V can be used for the DC power supply that requires no rectifier such as a battery.
 *3 The protective device NVD_SCD_ is manufactured by KOA, and TNR_V_K is manufactured by Nippon Chemi-Con Corporation.
 * There is no attachment of protective device for the BXW model.

Ordering Information

% The release lever specification and the voltage specification 12V and 180V are available by special order.
 % Contact us for the bore diameter d other than the measurement table or the voltage other than the specification table.

BXL model

For braking only

The BXL model is a compact brake exclusively for braking.

High reliability

The magnet circuit is designed by the finite element method, featuring high reliability.

Long operating time The high abrasion resistant friction material (non asbestos) provides for long life operation.

Stable braking Torque fluctuations are small. Load is braked instantaneously even in trouble.

Low noise

The rotor spring reduces a rasping high-frequency friction sound during braking. A quiet braking sound is ensured.

Adapted to the RoHS

Adapted to the Restriction of Hazardous Substances that bans the use of 6 substances such as mercury or lead can be selected as option.

Use application		For braking
Brake torque	[N·m]	2~22
Operational temp.	[°C]	-10~+40
Backlash		Little

Specification

Model	Size	Static friction torque	Voltage	Coil (at Wattage	20°C) Amperage	Resistance	Heat- resistance	Max. rotation speed	Rotating part moment of inertia	Allowable braking work rate	Total braking work	Armature suction time	Armature release time	Mass [kg]
							01033		J[KY'II]			ເຊຼຽງ	lar [3]	-
			DC24	15	0.63	38.4	F							
BXL-06-10	06	2	DC45	12	0.27	169	F	5000	3.75×10⁻°	58.3	2.0×10	0.035	0.020	0.9
			DC90	12	0.13	677	F							
			DC24	23	0.94	25.6	F							
BXL-08-10	XL-08-10 08	4	DC45	18	0.41	110	F	5000	6.25×10 ⁻⁵	91.7	3.5×10 ⁷	0.040	0.020	1.3
			DC90	18	0.21	440	F							
			DC24	27	1.14	21.1	F							
BXL-10-10	10	8	DC45	25	0.54	83.0	F	4000	13.75×10 ^{-₅}	108.3	6.2×10^{7}	0.050	0.025	2.3
			DC90	25	0.27	331	F							
DVI 12 10	10	16	DC24	35	1.46	16.2	F	2600	22 75 10	100.0	0.0×10^{7}	0.070	0.020	2.4
DAL-12-10	12	10	DC90	30	0.33	271	F	3600	33.75×10	133.3	9.0 \ 10	0.070	0.030	5.4
DVI -16-10	16	22	DC24	39	1.64	14.6	F	2000	7.25×10-4	102.2	11 1 1 107	0.100	0.025	E 4
DVT-10-10	10	22	DC90	39	0.43	207	F	3000	7.35×10	183.3	11.4×10	0.100	0.035	5.4

** The indicated values of the armature suction time and release time are in the case of direct-current side switching.
* For the armature suction time and release time in the case of alternating-current side switching (half-wave rectification), refer to the page of operating characteristics.

Dimension

Init	[mm]
UIII	

CAD

Model	Α	В	С	D	Е	F	Н	I	J	K	L	Μ	Ν	R	S	Т	U	а	d	b	t	CAD file No.
BXL-06-10	83	73	73	28	26.5	22	3	10	20.5	39.5	14	33.6	20	4.5	9	2-M5	30°	0.15	11	4	1.5	BXL1
BXL-08-10	96	86	86	35	32	25	3	12	20	41	17	35	20.8	5.5	10	2-M5	30°	0.15	14	5	2	BXL2
BXL-10-10	116	104	104	42	38	30	3	9.5	21	47.5	25	41	25.3	6.5	12	2-M6	30°	0.2	19	6	2.5	BXL3
BXL-12-10	138	124	124	50	45	35	4	12	19	49.8	30	43.5	23.3	6.5	12	2-M6	30°	0.2	24	8	3	BXL4
BXL-16-10	158	142	143	59	55	45	4	14	22.5	57.5	35	51	27.7	9	15	2-M8	40°	0.25	28	8	3	BXL5

Structural instructions

Handling instructions

Brake body

Many soft materials are used for the electromagnetic brake. Do not bang or drop. Unreasonable force may cause flaw or deformation.

Lead wire

Do not pull the brake lead wire or bend at a sharp angle. Also, do not dangle by holding the lead wire.

Mounting instructions

Fixation of the rotor hub Fix the rotor hub for the shaft with a set screw

Instruction for use Environment

Due to the dry-type brake, if any oil or water content is applied on the frictional surface, the torque decreases. If there is a possibility of contamination of oil or water content, use a protective cover.

Power supply voltage variation

Extreme fluctuation of the supply voltage may cause performance degradation of the brake. Suppress the variation within $\pm 10\%$ of the rated voltage.

Environmental temperature

The allowable operating temperature is $-10^{\circ}C \sim +40^{\circ}C$ (non freezing or condensing). If the operational temperature is not within the range, contact us.

Manual release

For the BXL model, the brake force can be manually released. Tighten the screws alternately for the two or three tap bores on the plate, and push the armature. The screw tip hits the armature and releases by approximately 90 degree of rotation. Additional tightening of the screw beyond 90 degrees of ratation will damage the brake.

Air gap adjustment

For the BXL model, the air gap adjustment is not required. The brake gap adjustment has been done before shipping. No gap adjustment is required in the initial use. Do not turn the adjustment nut.

Initial torque

Torque may below the indicated value in initial use. In such case, perform a test operation to condition the friction surface.

Recommended power supply and protective device

Set screw

Recommended power supply

Model	Rectification method	Frequency [Hz]	AC input voltage [V]	DC output voltage *1 [V]	Recommended protective device (varistor) *3	Applicable brake size
BE-05	Single-phase full-wave	50/60	AC100/200	DC24 *2	NVD07SCD082 or TNR7V820K	06
BE-10	Single-phase full-wave	50/60	AC100/200	DC24 *2	NVD07SCD082 or TNR7V820K	08,10,12,16
	Single phase half wave	E0/60	AC100	DC45	NVD07SCD220 or TNR7V221K	06,08,10
DEW-20	Single-phase hall-wave	50/60	AC200	DC90	NVD07SCD470 or TNR7V471K	06,08,10,12,16
	Cingle phase helf wave	E0/60	AC100	DC45	NVD07SCD220 or TNR7V221K	06,08,10
	Single-phase nalf-wave	50/60	AC200	DC90	NVD07SCD470 or TNR7V471K	06,08,10,12,16

* 1 indicates the value when applying current to the brake coil.

* 2 The power supply used for DC24V can also be used for the DC power supply that requires no rectifier such as battery.

*3 The protective device NVD_SCD_ is manufactured by KOA, and TNR_V_K is manufactured by Nippon Chemi-Con Corporation.

* Refer to the page of power supply for detailed specification

Protective device

When switching is performed on the direct-current side, connect the protective device parallel to the brake. Depending on the protective device, the operation time maybe longer. In such case, the above-referenced varistor is recommended to use. For the attached varistor, refer to the right-hand table.

Attached varistor list

Brake voltage	Attached varistor
DC24V	NVD07SCD082 or equivalent
DC45V	No attached varistor
DC90V	No attached varistor

(Refer to page 109 for other option numbers.)

*Contact us for the bore diameter d other than the measurement table or the voltage other than the specification table

Option Release lever (Available by special order)

Besides the manual release tap of the standard product, a manual release lever is available as an optional extra. For the dimensions of the brake with a release lever, refer to the dimensional table below. Other specification values are the same as the standard specification.

Dimension

															Jnit [mm]												
Model	A	в	С	D	Е	F	G	н	Т	J	к	L	м	N	ο	Р	Q	R	Υ	U	v	s	а	d	b	t	CAD file No.
BXL-06-12	83	73	73	28	26.5	22	42.8	3	10	20.5	49.5	14	33.7	20	2.6	88	24	4.5	64	73	16	9	0.15	11	4	1.5	-
BXL-08-12	96	86	86	35	32	25	44.4	3	12	20	51	17	35	20.8	2.9	122	27	5.5	95	85	20	10	0.15	14	5	2	-
BXL-10-12	116	104	104	42	38	30	51.5	3	9.5	21	57.5	25	41	25.3	3.2	162.5	32.5	6.5	130	103	28	12	0.2	19	6	2.5	-
BXL-12-12	138	124	124	50	45	35	55.7	4	12	19	64.8	30	43.5	23.3	5	200	40	6.5	160	121	36	12	0.2	24	8	3	-
BXL-16-12	158	142	143	59	55	45	64.2	4	14	22.5	72.5	35	51	27.7	6	230	44	9	186	140	36	15	0.25	28	8	3	_

Silent mechanism (Available by special order) Attenuation mechanism for the chatter

- during rotation
- Option number: S1
- Anti-noise spring for the rotor hub

As indicated on the right figure, there is a minute amount of backlash between the rotor and rotor hub. In the application where micro-vibration of the drive shaft such as a single-phase motor tends to occur, chatter caused by the backlash may be generated. The anti-noise spring reduces the chatter.

Attenuation mechanism for the armature operation sound

Option number: S2

• Attenuation mechanism for the armature suction sound When applying current through the brake, the magnetic circuit is formed and the armature is suctioned to the stator by the magnetic force. When the armature hits the stator pole face, the hitting sound is produced. The sound is reduced by applying a shock absorber to the stator pole part.

Option number list

Option contents	No silent mechanism	With anti-noise spring
No release lever	10	10S1
With release lever	12	12S1

The option 10 is the standard specification.

* The option S2 includes the anti-noise spring of S1 as well as suction sound attenuation mechanism

BXL-06 - 12S1 G 24V 1 DIN Option number

Memo	 	 	

BXH model

Non-excited operation type brakes

For holding only

The BXH model is a compact brake for holding and emergency braking only.

High torque

Same dimensions as the BXL model with double torque.

100 % of the rated torque from the initial period

No running-in required. Rated toque is available from startup.

High reliability

The magnet circuit is designed by the finite element method featuring high reliability.

Adapted to the RoHS

Adapted to the Restriction of Hazardous Substances that bans the use of 6 substances such as mercury or lead.

Use application		For holding
Brake torque	[N·m]	4~44
Operational temp.	[°C]	-10~+40
Backlash		Little

Specification

Model	Size	Static friction torque Ts [N ⋅ m]	Voltage [V]	Coil (at ^{Wattage} [W]	20°C) Amperage [A]	Resistance [Ω]	Heat- resistance class	Max. rotation speed [min ⁻¹]	Rotating part moment of inertia J [kg · m²]	Allowable braking work rate Ebal [J]	Total braking work E⊤ [J]	Armature suction time ta [s]	Armature release time t _{ar} [s]	Mass [kg]
			DC24	15	0.63	38.4	F							
BXH-06-10	06	4	DC45	12	0.27	169	F	5000	3.25×10 ⁻⁵	700	2.0×10 ⁶	0.040	0.020	0.9
BXH-08-10 08		DC90	12	0.13	677	F								
			DC24	23	0.94	25.6	F							
BXH-08-10 08	08	8	DC45	18	0.41	110	F	5000	5.75×10 ⁻⁵	1100	3.5×10 ⁶	0.045	0.020	1.3
			DC90	18	0.21	440	F							
			DC24	27	1.14	21.1	F							
BXH-10-10	10	16	DC45	25	0.54	83	F	4000	1.30×10 ⁻⁴	1300	6.2×10 ⁶	0.070	0.025	2.3
			DC90	25	0.27	331	F							
DVL 12 10	10	20	DC24	35	1.46	16.2	F	2600	2 20 × 10 ⁻⁴	1600	0.0×106	0.000	0.025	2.4
BXH-12-10 1	12	32	DC90	30	0.33	271	F	3000	3.20/10	1600	9.0~10	0.090	0.025	3.4
BXH-16-10 1	16	11	DC24	39	1.64	14.6	F	2000	6 02 × 10-4	2200	11 4 × 106	0 1 25	0.020	5.4
	10	44	DC90	39	0.43	207	F	3000	0.93 \ 10	2200	11.4 \ 10	0.125	0.030	5.4

** The indicated values of the armature suction time and release time are in the case of direct-current side switching.
** For the armature suction time and release time in the case of alternating-current side switching (half-wave rectification), refer to the page of operating characteristics.

Dimension

Unit [mm]

CAD

																						, inc frining
Model	Α	В	С	D	E	F	Н		J	Κ	L	Μ	Ν	R	S	Т	U	а	d	b	t	CAD file No.
BXH-06-10	83	73	73	28	26.5	22	3	10	20.5	39.5	14	33.6	20	4.5	9	2-M5	30°	0.15	11	4	1.5	BXH1
BXH-08-10	96	86	86	35	32	25	3	12	20	41	17	35	20.8	5.5	10	2-M5	30°	0.15	14	5	2	BXH2
BXH-10-10	116	104	104	42	38	30	3	9.5	21	47.5	25	41	25.3	6.5	12	2-M6	30°	0.2	19	6	2.5	BXH3
BXH-12-10	138	124	124	50	45	35	4	12	19	49.8	30	43.5	23.3	6.5	12	2-M6	30°	0.2	24	8	3	BXH4
BXH-16-10	158	142	143	59	55	45	4	14	22.5	57.5	35	51	27.7	9	15	2-M8	40°	0.25	28	8	3	BXH5

Structural instructions

Handling instructions

Brake body

Many soft materials are used for the electromagnetic brake. Do not bang or drop. Unreasonable force may cause flaw or deformation.

Lead wire

Do not pull the brake lead wire or bend at a sharp angle. Also, do not dangle by holding the lead wire.

Mounting instructions

%The * mark indicates the shaft standard value *Slack preventive is required for each screw

Recommended power supply and protective device

Recommended power supply

Model	Rectification method	Frequency [Hz]	AC input voltage [V]	DC output voltage *1 [V]	Recommended protective device (varistor)*3	Applicable brake size
BE-05	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K	06
BE-10	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K	08,10,12,16
	Single phase half wave	E0/60	AC100	DC45	NVD07SCD220 or TNR7V221K	06,08,10
DEW-20	Single-phase nall-wave	50/60	AC200	DC90	NVD07SCD470 or TNR7V471K	06,08,10,12,16
	Single-phase half-wave	E0/60	AC100	DC45	NVD07SCD220 or TNR7V221K	06,08,10
DEIVI-20	olingic phase hair wave	50/60	AC200	DC90	NVD07SCD470 or TNR7V471K	06,08,10,12,16

* *1 indicates the value when applying current to the brake coil.

**2 The power supply used for DC24V can also be used for the DC power supply that requires no rectifier such as battery. **3 The protective device NVD SCD is manufactured by KOA, and TNR V K is manufactured by Nippon Chemi-Con Corporation.

* Refer to the page of power supply for detailed specification

Protective device

When switching is performed on the direct-current side, connect the protective device parallel to the brake. Depending on the protective device, the operating time maybe longer. In such case, the above-referenced varistor is recommended to use. For the attached varistor, refer to the right-hand table.

a normal braking except for emergency braking during electrical power failure.

Environment

Instruction for use

For holding only

Due to the dry-type brake, if any oil or water content is applied on the frictional surface, the torque decreases. If there is a possibility of contamination of oil or water content, use a protective cover.

This brake is used exclusively for holding. Do not use this brake for

Power supply voltage variation

Extreme fluctuation of the supply voltage may cause performance degradation of the brake. Suppress the variation within $\pm 10\%$ of the rated voltage.

Environmental temperature

The allowable operating temperature is $-10^{\circ}C \sim +40^{\circ}C$ (non freezing or condensing). If the operational temperature is not within the range, contact us.

Manual release

For the BXH model, the brake force can be manually released. Tighten the screws alternately for the two or three tap bores on the plate, and push the armature. The screw tip hits the armature and releases by approximately 90 degree of rotation. Additional tightening of the screw beyond 90 degrees of rotation will damage the brake.

Air gap adjustment

For the BXH model, the air gap adjustment is not required. The brake gap adjustment has been done before shipping. No gap adjustment is required in the initial use. Do not turn the adjustment nut.

Attached varistor list

Brake voltage	Attached varistor
DC24V	NVD07SCD082 or equivalent
DC45V	No attached varistor
DC90V	No attached varistor

*Contact us for the bore diameter d other than the measurement table or the voltage other than the specification table

Option Release leverl (Available by special order)

Besides the manual release tap of the standard product, a manual release lever is available as an optional extra. For the dimensions of the brake with a release lever, refer to the dimensional table below. Other specification values are the same as the standard specification.

Dimension

Model	Α	в	с	D	Е	F	G	н	I	J	к	L	м	N	0	Ρ	Q	R	Y	U	v	s	а	d	b	t	CAD file No
BXH-06-12	83	73	73	28	26.5	22	42.8	3	10	20.5	49.5	14	33.7	20	2.6	88	24	4.5	64	73	16	9	0.15	11	4	1.5	_
BXH-08-12	96	86	86	35	32	25	44.4	3	12	20	51	17	35	20.8	2.9	122	27	5.5	95	85	20	10	0.15	14	5	2	-
BXH-10-12	116	104	104	42	38	30	51.5	3	9.5	21	57.5	25	41	25.3	3.2	162.5	32.5	6.5	130	103	28	12	0.2	19	6	2.5	-
BXH-12-12	138	124	124	50	45	35	57.6	4	12	19	64.8	30	45.4	23.3	5	200	40	6.5	160	121	36	12	0.2	24	8	3	-
BXH-16-12	158	142	143	59	55	45	66.5	4	14	22.5	75.5	35	53.3	27.7	6	230	44	9	186	140	36	15	0.25	28	8	3	_

Silent mechanism (Available by special order)

- Attenuation mechanism for the chatter during rotation
- Option number: S1
- Anti-noise spring for the rotor hub

As indicated on the right figure, there is a minute amount of backlash between the rotor and rotor hub. In the application where micro-vibration of the drive shaft such as a single-phase motor tends to occur, the chatter caused by the backlash may be generated. The anti-noise spring reduces the chatter.

Attenuation mechanism for the armature operation sound

Option number: S2

• Attenuation mechanism for the armature suction sound

When applying current through the brake, the magnetic circuit is formed and the armature is suctioned to the stator by the magnetic force. When the armature hits the stator pole face, the hitting sound is produced. The sound is reduced by applying a shock absorber to the stator pole part.

Option number list

Option contents	No silent mechanism	With anti-noise spring
No release lever	10	10S1
With release lever	12	12S1

% The option 10 is the standard specification.

Memo		

B	XR mod	el	Availa specia	ble by al order	Electromas actuated clutches brakes	netic ype actuated type clutches and trekes	Clutch and brake units	Non-excited operation type brakes	Electromagnetic tootred clutch	Erakemotor	Power supply for clutches & brakes
					 Sli The cor En The cau Fo The hol 10 No state 	m type a low profile fine ventional co ergy conso a low-capacity used by temp r holding o e BXR mode ding and em 0 % of the run in period rtup.	igure with ompany p ervation y design s perature r nly el is a c ergency b e rated f d is requi	2/3 of th roduct sa saves ene rise is als compact praking of torque f ired. Rate	nickness (aves the r ergy. Heat to reducer and light nly. f rom the ed torque	compared mounting s generatio d. weight br is availab	with the space. n of coil rake for eriod ole from
					Use a	pplication			For h	olding	
					Brake	torque	[N•ı	m]	16-	~55	
					Operat	ional temp.	٢ ٢]	2]	-10	~+40	
					Backl	ash			Li	ttle	
Spe	cificati	on									
Model	Size Static friction torque Ts [N · m]	CoiVoltageWat[V][V]	I (at 20°C) ttage Amperage I W] [A]	Resistance [Ω] Heat- resistance class	ce Max. rotation speed [min ⁻¹]	Rotating part moment of inertia J [kg ² ·m ²]	Allowable braking work rate Eba $\ell[J]$	Total braking work Ετ [J]	Armature suction time ta [s]	Armature release time t _{ar} [s]	Mass [kg]

%The indicated values of the armature suction time and release time are in the case of direct-current side switching.

0.90

0.88

26.8

27.4

F

F

5000

3600

1.35×10⁻

8.75×10⁻⁴

1500

2000

2.2×10⁶

1.5×10⁶

0.110

0.220

0.070

0.100

1.3

3.6

22

21

Dimension

16

55

DC24

DC24

BXR-10-10 10

BXR-16-10 16

																		Unit [mm]
Model	Α	В	С	D	E	F	I	J	L	Ν	Κ	R	S	а	d	b	t	CAD file No.
BXR-10-10	123.5	115	122	62	55	45	7.4	15	9	13.7	24.2	4.5	9.5	0.1	24	8	27	—
BXR-16-10	185	175	184	100	86	65	12	21.4	11.5	19.9	32.7	5.5	12.5	0.1	28	8	31	_

Structural instructions

Handling instructions

Brake body

Many soft materials are used for the electromagnetic brake. Do not bang or drop. Unreasonable force may cause flaw or deformation.

Lead wire

Do not pull the brake lead wire or bend at a sharp angle. Also, do not dangle by holding the lead wire.

Mounting instructions

Instruction for use

For holding only

This brake is used exclusively for holding. Do not use the brake for a normal braking except for an emergency braking during electrical power failure.

Environment

Due to the dry-type brake, if any oil or water content is applied on the frictional surface, the torque decreases. If there is a possibility of contamination of oil or water content, use a protective cover.

Power supply voltage variation

Extreme fluctuation of the supply voltage may cause performance degradation of the brake. Suppress the variation within $\pm 10\%$ of the rated voltage.

Environmental temperature

The allowable operating temperature is $-10^{\circ}C \sim +40^{\circ}C$ (non freezing or condensing). If the operational temperature is not within the range, contact us.

Air gap adjustment

For the BXR model, the air gap adjustment is not required. The brake gap adjustment has been done before shipping.

*The * mark indicates the shaft standard value. *Slack preventive is required for each scre

Recommended power supply and protective device

Recommended power supply

Model	Rectification method	Frequency [Hz]	AC input voltage [V]	DC output voltage *1 [V]	Recommended protective device (varistor)*3	Applicable brake size
BE-10	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K	10,16

**1 indicates the value when applying current to the brake coil.
**2 The power supply used for DC24V can also be used for the DC power supply that requires no rectifier such as battery.

** 3 The protective device NVD_SCD_ is manufactured by KOA, and TNR_V_K is manufactured by Nippon Chemi-Con Corporation.

* Refer to the page of power supply for detailed specification.

Protective device

When switching is performed on the direct-current side, connect the protective device parallel to the brake. Depending on the protective device, the operating time maybe longer. In such case, the above-referenced varistor is recommended to use. For the attached varistor, refer to the right-hand table.

Attached varistor list

Brake voltage	Attached varistor
DC24V	NVD07SCD082 or equivalent

Bore diameter (Dimensional sign d)

*Contact us for the bore diameter d other than the measurement table or the voltage other than the specification table

457 model Available by special order	Electromagnetic actuated type clutores and arckes electromagnetic actuated type clutores and arckes electromagnetic actuated type clutores and arckes electromagnetic actuated type clutores and arckes electromagnetic	Clutch nd brake units bra	excited ion type tootied clutch Erekemotor Forefutcres 2 irekes
	 For braking onl The 457 model braking only. External mount The external sta generated by the Adapted to the R Adapted to the R bans the use of 6 	y is a comp tor system coil. oHS estriction of substance	act and lightweight brake for od for stator In reduces the effect of heat of Hazardous Substances that es such as mercury or lead.
	Use application		For braking
2 3	Brake torque	[N·m]	4~80
	Operational temp.	[°C]	-10~+40
	Backlash		Little
Specification			

Model	Size	Static friction torque Ts [N · m]	Voltage [V]	Coil (at ^{Wattage} [W]	20°C) Amperage [A]	Resistance [Ω]	Heat- resistance class	Max. rotation speed [min ⁻¹]	Rotating part moment of inertia J [kg ² ·m ²]	Allowable braking work rate Pba & [W]	Total braking work Ετ [J]	Armature suction time ta [s]	Armature release time t _{ar} [s]	Mass [kg]
457-06-13	06	4	24	20	0.83	28.8	F	3000	1.3×10 ^{-₅}	66	3.4×10 ⁶	0.037	0.029	1.1
457-08-13	08	8	24	28	1.17	20.6	F	3000	4.5×10 ⁻⁵	104	6.3×10 ⁶	0.042	0.060	1.9
457-10-13	10	16	24	30	1.25	19.2	F	3000	2.0×10 ⁻⁴	133	1.1×10 ⁷	0.100	0.035	3.8
457-12-13	12	32	24	40	1.67	14.4	F	3000	4.5×10 ⁻⁴	200	2.1×10 ⁷	0.135	0.045	5.7
457-14-13	14	60	24	50	2.08	11.5	F	3000	6.3×10 ⁻⁴	233	2.3×10 ⁷	0.240	0.050	8.6
457-16-13	16	80	24	55	2.29	10.5	F	3000	15.0×10 ⁻⁴	270	3.9×10 ⁷	0.275	0.071	12

%The indicated values of the armature suction time and release time are in the case of direct-current side switching.

Dimension

																		Unit [mm]
Model	Α	в	D	F	G	н	Т	J	L	м	S	т	а	d	b	Nor. dim.	t Tolerance	CAD file No.
457 06 12	0/	70	21	21	6	MA	12	7.5	10	11.2	77	M4V20	0.2	11	4	1.8		_
457-00-15	04	12	51	51	0	1014	15	7.5	10	41.5	11	1014730	0.2	15	5	2.3		
/57-09-12	102	90	12	115	9	M5	16	85	20	10.8	03.5	MEV25	0.2	14	5	2.3	+0.1	_
457-00-15	102	90	42	41.5	9	IVIS	10	0.5	20	49.0	93.5	1015735	0.2	20	6	2.8	0	
457 10 12	120	110	11	11	10	MG	15	10	20	56 /	117	MEVIO	0.2	15	5	2.3		_
457-10-15	130	112	44	44	12	IVIO	15	10	20	50.4	117	1015740	0.2	20	6	2.8		
157 10 10	150	122	50	50	10	MG	10	10	25	62.4	126.2	MEVAE	0.2	20	6	2.8		_
437-12-13	150	132	52	52	12	IVIO	10	10	25	02.4	130.3	1015745	0.5	25	8	3.3		
157 14 12	165	145	60	60	14	Mo	20	10	20	77.2	150	MOVEE	0.2	25	8	3.3		_
437-14-13	100	145	60	60	14	IVIO	20	13	30	11.5	150	10722	0.5	30	8	3.3	+0.2	
157 16 12	100	170	70	70	14	Mo	25	12.2	20	00 E	1745	MCYCO	0.2	30	8	3.3		
457-10-15	190	170	/0	/0	14	IVIO	25	13.3	30	03.5	174.5		0.3	38	10	3.3		

Structural instructions

Handling instructions

Brake body

Many soft materials are used for the electromagnetic brake. Do not bang or drop. The unreasonable force may cause flaw or deformation.

Lead wire

Do not pull the brake lead wire or bend at a sharp angle. Also, do not dangle by holding the lead wire.

Mounting instructions

*Slack preventive is required for each screw

Instruction for use

Environment

Due to the dry-type brake, if any oil or water content is applied on the frictional surface, the torque decreases. If there is a possibility of contamination of oil or water content, use a protective cover.

Power supply voltage variation

Extreme fluctuation of the supply voltage may cause performance degradation of the brake. Suppress the variation within $\pm 10\%$ of the rated voltage.

Environmental temperature

The allowable operating temperature is $-10^{\circ}C \sim +40^{\circ}C$ (non freezing or condensing). If the operational temperature is not within the range, contact us.

Air gap adjustment

For the 457 model, the air gap adjustment is not required. The brake gap adjustment has been done before shipping.

Initial torque

Torque may below the indicated value in initial use. In such case, perform a test operation to condition the friction surface.

Recommended power supply and protective device

Recommended power supply

Model	Rectification method	Frequency [Hz]	AC input voltage [V]	DC output voltage*1 [V]	Recommended protective device (varistor)*3	Applicable brake size
BE-05	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K	06
BE-10	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K	08,10,12
BE-20	Single-phase full-wave	50/60	AC100/200	DC24*2	NVD07SCD082 or TNR7V820K	14,16

*1 indicates the value when applying current to the brake coil.
*2 The power supply used for DC24V can also be used for the DC power supply that requires no rectifier such as battery.
*3 The protective device NVD_SCD_ is manufactured by KOA, and TNR_V_K is manufactured by Nippon Chemi-Con Corporation.

* Refer to the page of power supply for detailed specification.

Protective device

When switching is performed on the direct-current side, connect the protective device parallel to the brake. Depending on the protective device, the operating time maybe longer. In such case, the above-referenced varistor is recommended to use. For the attached varistor, refer to the right-hand table.

Attached varistor list

Brake voltage	Attached varistor
DC24V	NVD07SCD082 or equivalent

Ordering Information

Size

Bore diameter (Dimensional sign d)

*Contact us for the bore diameter d other than the measurement table or the voltage other than the specification table.

458 model

High performance non-excited brake model

For both braking and holding

The 458 model is a high-torque brake with longer operating time used for both braking and holding.

Quiet control sound

By adopting the Pulley's unique armature, disturbing friction sound of high frequency is decreased.

Adjustable torque

The braking torque can be adjusted in a wide range by turning the torque adjustment ring. Minimum torque is assured by a double braking construction.

Manual release

The brake force will be released by pulling the manual release lever in a braking or holding state.

Dustproof cover

By attaching a rubber dust cover, it responds to an adverse environment.

Use application		For both braking and holding
Brake torque	[N·m]	4~400
Operational temp.	[°C]	-10~+40
Backlash		Little

Specification

		Static friction Coil (at 20°		20°C)		Heat-	Max. rotation	Rotating part	Allowable	Total braking	Armature	Armature	Massa	
Model	Size	torque	Voltage	Wattage	Amperage	Resistance	resistance	speed	moment of inertia	work rate	work	suction time	release time	Wass
		T₅ [N·m]	[v]	[W]	[A]	[Ω]	class	[min ⁻¹]	J [kg⋅m²]	Pbaℓ[W]	Ет [J]	ta [s]	tar [s]	[Kg]
			24	20	1.20	20.0	F							
458-06	06	4	96	20	0.21	461	F	3000	1.5×10 ^{-₅}	66	3.4×10 ⁷	0.045	0.015	1.0
			190	20	0.11	1805	F							
			24	25	1.04	23.0	F							
458-08	08	8	96	25	0.26	368	F	3000	6.1×10 ⁻⁵	104	6.3×10 ⁷	0.057	0.015	1.4
			190	25	0.13	1444	F							
			24	30	1.25	19.2	F							
458-10	10	16	96	31	0.32	297	F	3000	2.0×10 ⁻⁴	133	7.9×10 ⁷	0.076	0.028	2.5
			190	30	0.16	1203	F							
			24	40	1.67	14.4	F							
458-12	12	32	96	40	0.42	230	F	3000	4.5×10 ⁻⁴	200	2.1×10 ⁸	0.115	0.028	4.0
			190	40	0.21	903	F							
			24	50	2.09	11.5	F							
458-14	14	60	96	50	0.52	184	F	3000	6.3×10 ⁻⁴	233	2.3×10 ⁸	0.210	0.017	5.6
			190	50	0.26	722	F							
			24	55	2.29	10.5	F							
458-16	16	80	96	55	0.57	168	F	3000	1.5×10 ^{-₃}	270	2.9×10 ⁸	0.220	0.027	8.4
			190	60	0.32	602	F							
			24	85	3.57	6.8	F							
458-18	18	150	96	85	0.89	108	F	1500	2.9×10 ⁻³	333	4.6×10 ⁸	0.270	0.033	12.6
			190	85	0.45	425	F							
			24	100	4.14	5.8	F							
458-20	20	260	96	100	1.04	92	F	1500	7.3×10 ⁻³	422	7.0×10 ⁸	0.340	0.065	19.5
			190	110	0.58	328	F							
			24	110	4.62	5.2	F							
458-25	25	400	96	110	1.14	84	F	1500	2.0×10 ⁻²	500	1.1×10°	0.390	0.110	31.0
			190	110	0.58	328	F							

The indicated values of the armature suction time and release time are in the case of direct-current side switching.
 The mass indicates the value of the stator set (accessory number: 10). It is different depending on the accessory. Contact us for further information.

Dimension

																													U	nit [mm]
Model	Α	в	D	Е	F	G	н	I	J	к	L	м	N	0	P 1	P2	Q	R	s	U	v	а	n	е	α	ß	d	b	t	CAD file No.
458-06	87	72	31	91	87	52	24	15.3	6	36.3	18	3.95	3	1	15.8	32.8	54.5	107	23	13	8	0.2	3	4.5	120°	12°	11	4	1.5+0.3	-
458-08	105	90	41	109	105	60	26	14	7	42.8	20	1.5	3.2	1.5	16.3	41.3	63	118	23	13	8	0.2	3	5.5	120°	10°	15	5	2 ^{+0.5}	458-1
458-10	130	112	45	134	130	68	35	15	9	48.4	20	3.5	4.1	2	27.4	42.4	73.8	134	23	13	10	0.2	3	6.6	120°	9°	15 20	5	2 ^{+0.5}	458-2
458-12	150	132	52	155	150	82	40	18	9	54.9	25	5.5	4.1	2	29.4	47.4	85	163.5	23	13	10	0.3	3	6.6	120°	10°	20 25	5 7	2 ^{+0.5} 3 ^{+0.5}	458-3
458-14	165	145	55	169	165	92	52	19	11	65.5	30	6	5	2	33	50	98	195.5	32	24	12	0.3	3	9	120°	9°	25 30	7	3 ^{+0.5}	458-4
458-16	190	170	70	195	190	102	52	24	11	72.5	30	5	5	2.25	37.5	53.5	113	240	32	24	12	0.3	3	9	120°	10°	30	7	3 ^{+0.5}	458-5
458-18	217	196	77	222	217	116	62	28	11	83.1	35	9	5.9	2.75	41.1	59.1	124	279	32	24	14	0.4	* 4	9	*	9°	40	10	3.5 ^{+0.5}	458-6
458-20	254	230	90	259	254	135	72	35	11	97.6	40	10	6.4	3.5	47.6	68.6	146	319	32	24	14	0.4	* 4	11	*	10°	40 45	10 12	3.5 ^{+0.5}	-
458-25	302	278	120	307	302	165	85	44.8	12.5	105.7	50	10	8.3	4.5	57.5	88.7	170	445	32	24	16	0.5	6	11	60°	10°	50 60	12 15	$\frac{3.5^{+0.5}_{0}}{5^{+0.5}_{0}}$	· _

% For the mounting bore of the size 18 and 20 with * mark, α is the up-down and left-light symmetrical position of 30°.
 % The manual release lever can be mounted at a position closer to the stator when installed in the reverse orientation.

Accessory number

Accessory No.	Mounting flange	Manual release lever	Dust cover
10			
11			
12			
13			
14			
15			
16			
17			

mark: attached

Ordering Information 458-06-10 24V 11JIS

Bore diameter (Dimensional sign d) Voltage (specification table)

% Contact us for the bore diameter d other than the measurement table or the voltage other than the specification table.

Structural instructions

Handling instructions

Brake body

Many soft materials are used for the electromagnetic brake. Do not bang or drop. Unreasonable force may cause flaw or deformation.

Lead wire

Do not pull the brake lead wire or bend at a sharp angle. Also, do not dangle by holding the lead wire.

Setscre

Mounting instructions

Fixation of the spline hub Fix the rotor hub for the shaft with a set screw
Concentricity between the

%The * mark indicates the shaft standard value %Slack preventive is required for each screw.

Instruction for use

Environment

Due to the dry-type brake, if any oil or water content is applied on the frictional surface, the torque decreases. If there is a possibility of attachment of oil or water content, use a protective cover.

Power supply voltage variation

Extreme fluctuation of the supply voltage may cause performance degradation of the brake. Suppress the variation within $\pm 10\%$ of the rated voltage.

Environmental temperature

The allowable operating temperature is -10°C \sim +40°C (non freezing or condensing). If the operational temperature is not within the range, contact us.

Torque adjustment

For the 458 model, the air gap adjustment is possible. The indicated torque is the value when the adjustment ring is fastened (before shipment). To dampen the torque, turn the torque adjustment ring counterclockwise.

Initial torque

Torque may below the indicated value in initial use. In such case, perform a test operation to condition the friction surface.

Manual release

For the 458 model, the brake force can be manually released. (Accessory number: 12, 14, 16 and 17) Do not apply excessive force to the release lever. Make sure that the lever is released before mounting or operation.

Recommended power supply and protective device

Recommended power supply

Model	Rectification method	Frequency [Hz]	AC input voltage [V]	DC output voltage*1 [V]	Recommended protective device (varistor) *3	Applicable brake size
BE-05	Single-phase full-wave	50/60	100/200	DC24*2	NVD07SCD082 or TNR7V820K	06
BE-10	Single-phase full-wave	50/60	100/200	DC24*2	NVD07SCD082 or TNR7V820K	08,10,12
BE-20	Single-phase full-wave	50/60	100/200	DC24*2	NVD07SCD082 or TNR7V820K	14,16,18
BE-40	Single-phase full-wave	50/60	100/200	DC24*2	NVD14SCD082 or TNR14V820K	20,25
BEW-2F	Single-phase full-wave	50/60	100	DC90*4	NVD07SCD220 or TNR7V221K	06,08,10,12,14,16
BEW-1F	Single-phase full-wave	50/60	100	DC90*4	NVD14SCD220 or TNR14V221K	18,20,25
BEW-2H	Single-phase half-wave	50/60	200	DC90*4	NVD07SCD470 or TNR7V471K	06,08,10,12,14,16
BEW-4W	Single-phase half-wave	50/60	200	DC90*4	NVD14SCD470 or TNR14V471K	18,20,25
BEM-2H	Single-phase half-wave	50/60	200	DC90*4	NVD07SCD470 or TNR7V471K	06,08,10,12,14,16
BEW-2F	Single-phase full-wave	50/60	200	DC180*5	NVD07SCD470 or TNR7V471K	06,08,10,12,16
BEW-1F	Single-phase full-wave	50/60	200	DC180*5	NVD14SCD470 or TNR14V471K	18,20,25
BEW-4H	Single-phase half-wave	50/60	400	DC180*5	NVD14SCD820 or TNR14V821K	06,08,10,12,14,16,18,20,25

*1 indicates the value when applying current to the brake coil.
*2 The power supply used for DC24V can also be used for the DC power supply that requires no rectifier such as battery.
*3 The protective device NVD_SCD_ is manufactured by KOA, and TNR_V_K is manufactured by Nippon Chemi-Con Corporation.
*4 For the rated voltage DC96V of the 458 model, apply the power supply of the above output voltage DC90V.
*5 For the rated voltage DC190V of the 458 model, apply the power supply of the above output voltage DC180V.
** Short the page of the power supply of the above output voltage DC180V.

* Refer to the page of power supply for detailed specification.

Protective device

When switching is performed on the direct-current side, connect the protective device parallel to the brake. Depending on the protective device, the operating time may become longer. In such case, the above-referenced varistor is recommended to use.

Besides, the varistor is attached to each brake as indicated in the right-hand table. For the DC96V and DC190V specifications, the varistor for full-wave rectification is attached. In the case of half-wave rectification, refer to the recommended protective device described above.

Attached varistor list

Brake voltage	Size	Attached varistor
DCOAV	06,08,10,12,14,16	NVD07SCD082 or equivalent
DC24V	18,20,25	NVD14SCD082 or equivalent
DCOGV	06,08,10,12,14,16	NVD07SCD220 or equivalent
DC901	18,20,25	NVD14SCD220 or equivalent
	06,08,10,12,14,16	NVD07SCD470 or equivalent
001900	18,20,25	NVD14SCD470 or equivalent

* The attached varistor is selected under condition of full-wave rectification.

Particular case correspondence

Example of particular contents

For the request other than the standard product or optional product, we will utilize our capacity and experiences and design the product to meet the requirements. Contact us if there is a demand for a special specification as follows.

Also note that the following specifications may not be responded depending on the use condition, constraint dimension, brake size or mounting constraint.

Particular torque

(other than the specification table)

By changing the torque, the total frictional work (operating life) or responsiveness will change. Please contact us with other than standard design requirements.

Particular bore diameter for rotor hub

For a non-standard bore other than those listed in our dimensionsal tables please contact us for assistance.

Ordering Information

Particular voltage

The voltage other than DC24V, DC45V and DC90V (including a current-fed brake).

Hexagon socket set screw for rotor hub

If a hexagon socket set screw is required as a fixation method of rotor hub.

The custom-designed item (particular case correspondence) is accepted as an order by exchanging the delivery specification document according to the designated form described below.

Application example

Silent correspondence brake

Feature

The suction and release sounds during brake actuation are reduced. It can be used in the environment where a silent structure is required for the device or machine.

Application example: Medical equipment, multilevel parking garage,etc.

Non-excited brake with a special release lever

Feature

The release lever is exclusively designed in accordance with the structure of device or machine. It can be used for the drive positioning or emergency brake releasing under condition of no power.

Application example: Electrical car, elevator machine, etc.

Current-fed brake

Flange-integrated brake BXF model

Single-sided braking method BXN model

The current-fed brake can perform an overexcitation control by using the incoming current during motor start-up to quicken the operating time. It has a longer operating time, also has a capability of suppressing an increase in temperature. Application example: hoist, winch, etc.

The BXF model is composed of an integrated combination of a brake mounting flange of device or machine and brake stator. The number of components of the device or entire machine can be reduced. Space can be also saved.

Application example: rotating equipment

Feature

The BXN model has one friction surface (one surface). No friciton is generated during drive rotation (brake release).

Overexcitation power supply BEW-2FH (Full-wave/Half-wave power supply)

Feature

Double-overexcitation control with a combination of full-wave and half-wave rectifications can be performed. To quicken the responsiveness of the brake or to prolong the total amount of work (operating life) is possible.

For the detailed specification, refer to the section of power supply.

Operating characteristics

Operating time

BXW-L m	3XW-L model (for braking) Unit [s]									
Voltage	Size	Switching	tar	ta						
12V	01		0.015	0.008						
24V	02	-	0.015	0.008						
45V	03	DC side	0.025	0.025						
90V	04		0.030	0.030						
180V	05		0.035	0.035						

BXW-H n	3XW-H model (for holding) Unit [s]									
Voltage	Size	Switching	tar	ta						
12V	01		0.010	0.010						
24V	02		0.010	0.010						
45V	03	DC side	0.020	0.035						
90V	04		0.025	0.040						
180V	05		0.030	0.045						

BXL mod	3XL model (for braking) Unit [s]									
Voltage	Size	Switching	tar	tap	tp	ta				
	06		0.020	0.015	0.035	0.035				
24V	08		0.020	0.015	0.035	0.040				
45V	10	DC side	0.025	0.020	0.045	0.050				
90V	12		0.030	0.025	0.055	0.070				
	16		0.035	0.030	0.065	0.100				
	06		0.110	0.035	0.145	0.035				
4514	08		0.110	0.040	0.150	0.040				
45V 90V	10	AC side	0.150	0.060	0.210	0.050				
304	12		0.180	0.095	0.275	0.070				
	16		0.180	0.100	0.280	0.100				

tar: Armature release time

Time from when the current is shut off till when the armature returns to the position before suction and torque is generated.

tap: Actual torque risetime

Time from when torque is generated till when it becomes 80% of the rated torque.

tp: Torque risetime

Time from when the current is applied till when it becomes 80% of the rated torque.

ta: Armature suction time

Time from when the current is applied till when the armature is suctioned and the torque is damped.

tid: Initial lagging time

Time from when the operation input is on till when the actuating input or releasing input is on for the brake body.

l	BXH model (for holding)			Unit [s]
	Voltage	Size	Switching	tar	ta
	24V 45V 90V	06		0.020	0.040
		08		0.020	0.045
		10	DC side	0.025	0.070
		12		0.025	0.090
		16		0.030	0.125
		06		0.070	0.040
	4514	08		0.080	0.045
	45V 90V	10	AC side	0.090	0.070
		12		0.120	0.090
		16		0.140	0.125

458 mode	el					Unit [s]
Voltage	Size	Switching	tar	tap	tp	ta
	06		0.015	0.013	0.028	0.045
	08		0.015	0.016	0.031	0.057
	10		0.028	0.019	0.047	0.076
24V	12	DC side	0.028	0.025	0.053	0.115
96V	14		0.017	0.025	0.042	0.210
190V	16		0.027	0.030	0.057	0.220
	18		0.033	0.045	0.078	0.270
	20		0.065	0.100	0.165	0.340
	25		0.110	0.120	0.230	0.390

Control circuit

For each 45V, 90V, 96V and 180V specifications of the model BXW, BXL, BXH, 457 and 457 (Single-phase half-wave rectification)

Alternating-current side switching

 \bullet It is a generalized method. Connection is easy.

 For each 12V and 24V specification of the model BXW, BXL, BXH, BXR, 457 and 458 (Single-phase full-wave rectification)

Direct-current side switching

Protective device

When switching is performed on the direct-current side, connect the protective device parallel to the brake. Depending on the protective device the operation time maybe longer. In such case, the above-referenced varistor is recommended. Select the appropriate varistor from the table below in accordance with the brake size and AC voltage before rectification. In addition, the varistor is attached to the 24V specification of the model, BXL and BXH, and the model BXR, 457 and 458. Refer to the attached varistor list of each model.

Brake size	Voltage before rectification [V]	Recommended varistor model
	AC30 or less	NVD07SCD082 or equivalent
01~18	More than AC30, AC110 or less	NVD07SCD220 or equivalent
	More than AC110, AC220 or less	NVD07SCD470 or equivalent
	AC30 or less	NVD14SCD082 or equivalent
20~25	More than AC30, AC110 or less	NVD14SCD220 or equivalent
	More than AC110, AC220 or less	NVD14SCD470 or equivalent

Direct-current side switching

• Faster operating characteristics than the alternatingcurrent side switching can be obtained.

 For each 90V, 96V, 180V and 190V specifications of the model BXW, 457 and 458 (Single-phase full-wave rectification)

Direct-current side switching

Selection

Study of brake for braking load

Study of toque required for braking load

For selecting the appropriate brake size, to evaluate the torque T required for braking and select the brake size above the torque are necessary.

If the load conditions are not clear

Assume that the motor is correctly selected. By using the following formula from the motor output, estimate the torque as a measure.

$T_{M} = \frac{9550 \times P}{n_{r}} \times \eta [N \cdot m]$

- P : Motor output [kW]
- nr : Rotating velocity of the brake shaft [min⁻¹]
- η : Transmission efficiency from the motor to brake

2 If the load conditions are clear

If the load conditions are clear, evaluate the torque required for braking by the formula below.

$$T = \left(\frac{J \times n}{9.55 \times t_{ab}} \pm T_{i}\right) \times K[N \cdot m]$$

- J: Total amount of inertia moment on the load side [kg · m²]
- n : Rotating velocity [min⁻¹]
- tab : Actual braking time [s] T : Load torque [N · m]
- K : Safety factor (refer to the table below)

In the formula, the load torque T_{ℓ} is indicated by a plus-minus (+/-) sign. If the load torque works on the direction of enhancing the brake, the sign of the load torque T_{ℓ} is - (minus), and if it works on the direction of counteracting, it is + (plus). The actual braking time tab is the time required from when the braking torque is generated till when the braking is completed. If it is not clear in the selecting stages, estimate the value by considering the operating life.

Load condition	Factor
Low-inertia/low-frequency constant load	1.5
General use of a standard inertia	2
Large inertia/high-frequency load fluctuations	3

Provisional selection of size

Select the brake size in order that the torque T evaluated by the above formula satisfies the following formula. $T_b > T$ (or T_M)

Tb: Brake torque [N·m]

*Consider the brake torque as Ts=Tb.

Study of work

If the torque required for braking is small in full measure, the size selection can be performed only by the study of torque T described above. When considering the effect of heat generated while braking, confirm if the specifications meet the requirements for the operation frequency and total number of operations (operating life) per unit time is necessary.

The amount of work E_{b} required for a single braking is evaluated by the formula below.

$E_{b} = \frac{J \times n^{2}}{182} \times \frac{T_{b}}{T_{b} \pm T_{\ell}} [J]$

The sign of the load torque T_{ℓ} is + (plus) if the load torque works on the direction of enhancing the brake. If the load torque works on the direction of counteracting, the sign is - (minus).

Confirmation of the available operation frequency per minute. By using the following formula, evaluate the available operation frequency per minute to confirm if the demanded operating frequency is small in full measure.

$S = \frac{60 \times P_{bal}}{F_b} [Operations/min]$

Pbal : Allowable braking work rate [W] Eb : Work required for a single braking [J]

Confirmation of the total number of operations (operating life) By using the following formula, evaluate the total number of operations (operating life) to confirm if the demanded life meets the requirements.

ET: Total braking work [J]

4 Study of braking time

If there is a limit to the time required for load decelerating and stopping, by using the formula below to confirm if the total braking time meets the requirements.

ttb=tid+tar+tab

tar. Armature release time [s] tid: Initial lagging time [s]

The braking time T_{ab} is the time from when the braking torque is generated till when the braking is completed. By the formula below, evaluate the braking time T_{ab} .

$t_{ab} = \frac{J \times n}{9.55 \times (T_b \pm T_\ell)} [s]$

The sign of the load torque T_{ℓ} is + (plus) if the load torque works on the direction of enhancing the brake. If the load torque works on the direction of counteracting, the sign is - (minus).

5 Study of stopping accuracy

If confirmation of the stopping accuracy is required, evaluate the stopping angle (rotation) by the formula below.

 $\theta = 6 \times n \times \left(t_{id} + t_{ar} + \frac{1}{2} t_{ab} \right) [^{\circ}]$

tar : Armature release time [s] tid : Initial lagging time [s]

By the formula below, empirically evaluate the variation in stopping position i.e. stopping accuracy $\triangle \theta$ to use as a measure.

 $\Delta \theta = \pm 0.15 \times \theta$ [°]

Study of brake for holding load

Study of torque required for holding load The torque T required for holding load during stationary state is evaluated by the formula below.

T=Tℓmax×K [N·m]

T # max : Maximum load torque [N·m] K : Safety factor (refer to the table below)

Load condition	Factor
Low-inertia/low-frequency constant load	1.5
General use of a standard inertia	2
Large inertia/high-frequency load fluctuations	3

2 Provisional selection of size

Select the brake size in order that the torque T evaluated by the above formula satisfies the following formula.

Ts>T [N·m]

Ts: Static friction torque of the brake [N·m]

3Study of work

For the brake used for holding purpose, braking is limited to a time of emergency. By the formula below, evaluate the single braking work E_b required for emergency braking to confirm if the result is below the allowable braking work $E_{ba\,\ell}$ of the selected brake.

$E_{b} = \frac{J \times n^{2}}{182} \times \frac{T_{b}}{T_{b} \pm T_{\ell}} [J]$

- J : Total moment of inertia on the load side [kg m²]
- n : Rotating velocity [min⁻¹]
- T_b : Brake torque [N⋅m] T_{ℓ max} : Maximum load torque [N⋅m]

The sign of the maximum load torque $T_{\ell max}$ is + (plus) if the load works on the direction of enhancing the brake. If the load works on the direction of counteracting, the sign is - (minus).

Eb≪**E**baℓ **[J]**

4 Study of operation number

By the formula below, evaluate the total braking number L (operating life) for emergency braking to confirm if the result meets the required specifications.

$L = \frac{E_{T}}{E_{b}} [Operation]$

ET: Total braking work[J]

It depends on the use environment, but the emergency braking frequency should be approximately one time per minute. If the single braking work E_b becomes more than 70 % of the allowable braking work $E_{ba\,\textsc{s}}$, cool down the brake completely after emergency braking.

Selection Example 1

Braking-purpose brake used for elevating operation of load

The selection of brakes for braking load as above figure is performed as follows.

Motor (brake shaft) rotating velocity	n	1800 [min ⁻¹]
Load shaft rotating velocity	n	60 [min ⁻¹]
Motor-side gear moment of inertia	J_1	1.5×10 ⁻² [kg⋅m ²]
Load-side gear moment of inertia	J_2	1.5×10 ⁻² [kg⋅m ²]
Load-side drum moment of inertia	J₃	4.30 [kg•m²]
Motor with reducer moment of inertia	Jм	6×10 ⁻³ [kg⋅m²]
Load moment of inertia	J_A	15.67 [kg•m²]
Load-side torque	Т	62.5 [N•m]
Number of braking	L	53,000 cycle or more
Operation frequency	S	0.1 [cycle/min]

For the number of braking and operation frequency, count each operation of lifting and lowering as one cycle.

Consider the number of braking as 6 [operations/h] x 8[[h/day] x 365 [day] x 3 [year]

Study of torque

From the above specifications, evaluate the torque required for braking and select the appropriate brake size by comparing with the dynamic friction torque of the catalog.

● Evaluation of the moment of inertia J_B converted to the brake shaft

By the formula below, evaluate the moment of inertia J_B [kg • m²] converted to the brake shaft (motor shaft). In this regard, R is the rotating velocity ratio between the motor and load shaft.

 $J_{B}=J_{M}+(J_{1}+J_{2}+J_{3}+J_{A})\times R^{2} [kg \cdot m^{2}]$ $J_{B}=6\times 10^{-3}+(1.5\times 10^{-2}+1.5\times 10^{-2}+4.30+15.67)\times (60/1800)^{2}$ $\doteqdot 2.8\times 10^{-2} [kg \cdot m^{2}]$

Sevaluation of the load torque T_ℓ converted to the brake shaft By the formula below, evaluate the load torque T_ℓ converted to the brake shaft (motor shaft). In this regard, η indicates the transmission efficiency, and it is 0.85 for this selection.

$T_{\ell} = R \times T/\eta [N \cdot m]$

T₂=60/1800×62.5/0.85 ≒2.45 [N⋅m] S Evaluation of the torque T required for braking

By using the formula below, evaluate the torque T $[{\rm N} \cdot {\rm m}]$ required for braking.

At this point, set the conditions as follows;

- * The actual braking time tab is 2.0 [s] as a measure.
- % The sign of the load torque T_R is (minus) during lifting when the load works on the direction of enhancing the brake, and the sign is + (plus) during lowering when the load works on the direction of counteracting the brake.
- * For the safety factor K, select 3.0 by the use condition.

In the case of lifting

$$T_{up} = \left(\frac{J_B \times n}{9.55 \times t_{ab}} - T_\ell\right) \times K$$
$$T_{up} = \left(\frac{2.8 \times 10^{-2} \times 1800}{9.55 \times 2.0} - 2.45\right) \times 3.0$$
$$\Rightarrow 0.57 \ [N \cdot m]$$

In the case of lowering

$$T_{\text{DOWN}} = \left(\frac{J_{\text{B}} \times n}{9.55 \times t_{\text{ab}}} + T_{\ell}\right) \times K$$
$$T_{\text{DOWN}} = \left(\frac{2.8 \times 10^{-2} \times 1800}{9.55 \times 2.0} + 2.45\right) \times 3.0$$

By the above results, the required torque is 15.3 [N \cdot m]. Confirm the specification in the catalog and select the size 12 of the BXL model (dynamic friction torque 16.0 [N \cdot m]).

2Study of work

Confirm if the brake selected by the required torque meets the required specifications for the number of braking and brake frequency.

DEvaluation of the total moment of inertia J

Evaluate the total moment of inertia by adding the rotating part moment of inertia of the provisionally selected BXL-12 (catalog value 33.75×10^{-5}) to the previously evaluated moment of inertia converted to the brake shaft J_B.

J=2.8×10⁻²+33.75×10⁻⁵ ≑2.83×10⁻²[kg⋅m²]

②Evaluation of the amount of work E_b required for a single braking

Evaluate the work required for a single braking by using the total moment of inertia evaluated in ①. The sign of the load torque T_{ℓ} is + (plus) during lifting when the load works on the direction of enhancing the brake, and the sign is - (minus) during lowering when the load works on the direction of counteracting the brake.

In the case of lifting

$$E_{bup} = \frac{J \times n^{2}}{182} \times \frac{T_{b}}{T_{b} + T_{\ell}}$$

$$E_{bup} = \frac{2.83 \times 10^{-2} \times 1800^{2}}{182} \times \frac{16.0}{16.0 + 2.45}$$

$$\approx 437 \ [J]$$
In the case of lowering

$$E_{bDOWN} = \frac{J \times n^{2}}{182} \times \frac{T_{b}}{T_{b} - T_{\ell}}$$

$$E_{bDOWN} = \frac{2.83 \times 10^{-2} \times 1800^{2}}{182} \times \frac{16.0}{16.0 - 2.45}$$

$$\approx 595 \ [J]$$

Oconfirmation of the available operation frequency per minute S

By substituting the previously evaluated single braking work E_b and the allowable braking work rate $P_{ba\,\ell}$ (catalog value 133.3W) into the formula below, evaluate the available operation frequency S per minute.

In the case of lifting

 $S_{up} = \frac{60 \times P_{ba\ell}}{E_{bup}}$ $S_{up} = \frac{60 \times 133.3}{437}$ $\Rightarrow 18.3 [Operations/min]$ In the case of lowering

$S_{\text{DOWN}} = \frac{60 \times P_{\text{ball}}}{E_{\text{bDOWN}}}$ $S_{\text{DOWN}} = \frac{60 \times 133.3}{595}$

≒13.4 [Operations/min]

The demanded operation frequency is much smaller than the evaluated operation frequency then it meets the requirements. In addition, the braking work rate used for the evaluation (catalog value) is the value under the ideal conditions that the demanded operation frequency should be low in full measure.

13.4 [Operations/min] »0.1 [Operations/min]

Evaluation of the total number of operations (operating life)

By substituting the previously evaluated single braking work E_b and the total friction work E_T of the BXL-12 (catalog value 9.0×10^7 [J]) into the formula below, evaluate the total number of operations L.

Assuming that the work for one cycle of lifting and lowering is E_b

Eb=Ebup+EbDOWN

E_b=1032 [J]

The total number of operations L is;

 $L = \frac{E_{T}}{E_{b}}$

L= <u>1032</u>

≒87,209 [cycles]

The demanded total number of operations is smaller than the evaluated total number of operations (operating life) that it meets the requirements.

87,209 [cycles]>53,000 [cycles]

Study of braking time

The total braking time t_{ar} is evaluated by the sum of the armature release time t_{ar} and the initial lagging time t_{id} (time from when the operation input is on until the actuating input is on). At this point, the actual braking time during lowering operation is expected to be larger that consideration is given only to lowering operation. The sign of the load torque T_{a} is - (minus) since the load works on the direction of counteracting the brake.

$$t_{ab} = \frac{J \times n}{9.55 \times (T_b - T_\ell)}$$

$$t_{ab} = \frac{2.83 \times 10^{-2} \times 1800}{9.55 \times (16.0 - 2.45)}$$

$$\approx 0.39[s]$$

From the catalog, apply 0.03 [S] to the armature release time t_{ar} of the BXL-12. For the initial lagging time t_{d} , apply 0.025 [S] from the general relay operating time. Therefore, the total braking time t_{tb} is;

ttb=0.025+0.030+0.39 ≑0.445 [s]

4 Study of stopping accuracy

If there is a constraint for the stopping accuracy (stopping distance), evaluate the stopping accuracy by using the formula below.

$\theta = 6 \times n \times (t_{id} + t_{ar} + 1/2 \times t_{ab})$ =2700[°]

By the formula below, empirically evaluate the variation in stopping position i.e. stopping accuracy $\triangle \theta$ to use as a measure.

⊿θ=±0.15×θ =±405[°]

This angle is the angle at the brake shaft so that when the stopping accuracy θ max is 2700+405=3105 [°] and the drum diameter D_d is 0.5 [m], the braking distance B_d of the load W is;

$B_{d} = \theta \max/360 \times R \times 2\pi \times D_{d}$ = (3105/360) × (60/1800) × 2\pi × 0.5 = 0.90[m]

If there is no problem with the braking time and stopping accuracy, the BXL-12 can be selected.

Selection Example 2

Holding-purpose brake used for ball screw drive of load

The selection of brakes for braking load as above figure is performed as follows.

Motor (brake shaft) rotating velocity	n	1800 [min ⁻¹]
Load shaft rotating velocity	n	900 [min ⁻¹]
Motor moment of inertia	Jм	0.001 [kg•m²]
Load mass	М	500 [kg]
Feed screw lead	Р	0.01 [m]
Feed screw shaft diameter	D	0.05 [m]
Feed screw length	1	1 [m]
Feed screw friction factor	μ	0.2

Study of torque

From the above specifications, evaluate the torque required for braking and select the appropriate brake size by comparing with the static friction torque of the catalog.

• Evaluation of the load torque T_{ℓ} converted to the brake shaft By the formula below, evaluate the load torque T_{ℓ} [N · m]. In this regard, assume that no external force F [N · m] is applied and the acceleration due to gravity g [m/s²] is 9.8 [m/s²]. R indicates the rotating velocity ratio between the motor and load shaft, and (η) indicates the transmission efficiency, which is 0.85 for this selection.

$T_{\ell} = R \times 1/2\pi \times P \times (F + \mu M_{g})/\eta \quad [N \cdot m]$ $T_{\ell} = (900/1800) \times 1/2\pi \times 0.01 \times (0+0.2 \times 500 \times 9.8/0.85)$

≑0.92[N · m]

②Evaluation of the torque T required for holding

By using the formula below, evaluate the required torque T for holding. In this regard, the safety factor K is 2.

T=Tℓ×K[N·m] T=0.92×2

≒1.84[N · m]

By the above results, the required torque is $1.84 [N \cdot m]$. Confirm the specification in the catalog and select the size 06 of the BXH model (static friction torque 4.0 [N \cdot m]).

2Study of work during emergency braking

The brake selected by the required torque is designed for holding purpose that the braking operation is limited to a time of emergency. Therefore, to confirm if the single braking work E_b is below the allowable braking work $E_{ba\,\ell}$ is necessary.

Evaluation of the moment of inertia of the feed screw

Assuming that the feed screw has a round bar with 7.8 of specific gravity, 1 [m] of length and 0.05 [m] of diameter, the moment of inertia of the feed screw J_A [kg • m²] is;

$$J_{A} = \frac{1}{8} \times M \times D^{2}$$

= $\frac{1}{8} \times (0.025^{2} \times \pi \times 1 \times 7.8 \times 1000) \times 0.05^{2}$

≑0.0048[kg•m²]

Evaluation of the moment of inertia of the straight-line body By the formula below, evaluate the moment of inertia J_x [kg • m²] of the straight-line body.

$$J_{X} = J_{A} + \frac{M \cdot P^{2}}{4\pi^{2}}$$

= 0.0048 + $\frac{500 \times 0.01^{3}}{4 \times \pi^{2}}$
 $\Rightarrow 6.1 \times 10^{-3} [kg \cdot m^{2}]$

Evaluation of the total moment of inertia converted to the brake shaft

Estimate the total moment of inertia by adding the provisionally selected rotating part moment of inertia of the BXH-06 (catalog value $(3.25 \times 10^{-5} \text{kg} \cdot \text{m}^2)$) and the motor moment of inertia to the previously evaluated straight-line body moment of inertia J_x [kg \cdot m²] **②**. In this regard, R is the rotating velocity ratio between the motor and load shaft.

$J=J_{x}\times R^{2}+J_{M}+J_{B}[kg\cdot m^{2}]$

$=6.1\times10^{-3}\times(\frac{1}{2})^{2}+0.001+3.25\times10^{-5}$

=2.56×10⁻³[kg·m²]

Study of work

By the formula below, evaluate the single braking work E_b required for emergency braking. In this regard, the brake torque T_b [N \cdot m] is the catalog rated value 4.0 [N \cdot m] and the sign of the load torque T_a is + (plus) since the load works on the direction of enhancing the brake.

$$E_{b} = \frac{J \cdot n^{2}}{182} \times \frac{T_{b}}{T_{b} - T_{\ell}}$$

$$E_{b} = \frac{2.56 \times 10^{-3} \times 1800^{2}}{182} + \frac{4.0}{4.0 + 0.92}$$

≒37.1[J]

The evaluated braking E_b is below the allowable braking work $E_{ba\,\ell}$ (catalog value 700 [J]) that it meets the requirements.

37.1 [J]<700 [J]

3 Study of operation number

The total number of braking (operating life) L for emergency braking can be evaluated by the formula below. The total braking work E_T of the BXH-06 is (2.0x10⁶ [J]) from the catalog, therefore,

$$L = \frac{E_{T}}{E_{b}}$$
$$L = \frac{2.0 \times 10^{6}}{37.1}$$

≒53,908 [operations]

In this specification, the BXH-06 can be selected.

Frequency of emergency braking seriously affects on the operating life that it should be approximately one time per minute.