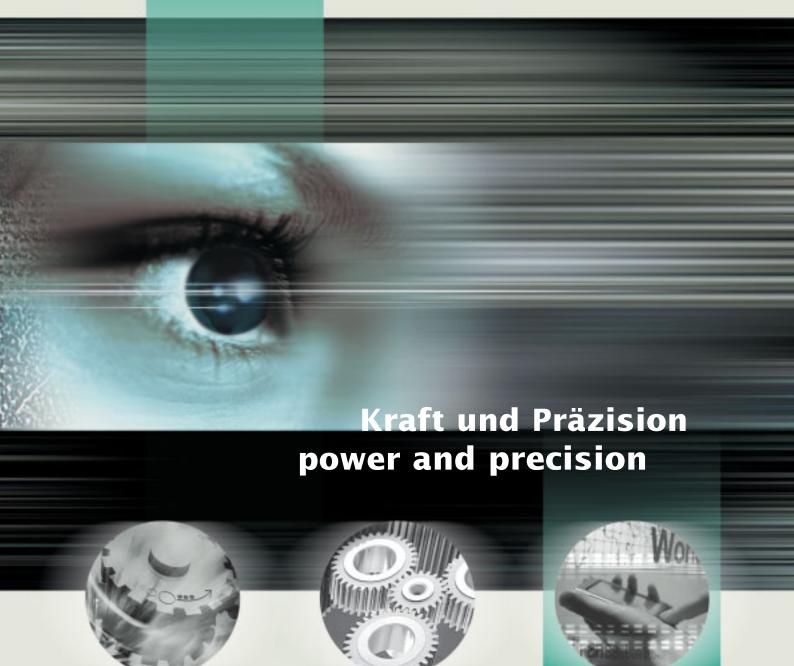


Authorized Distributors collective trade links pvt. ltd.

17, Aryan Corporate Park, Nr. Thaltej Railway Crossing, Thaltej, Ahmedabad-380054.


Phone: +91-79-26474700 - 50

Email: sales@collectivebearings.com

Web: www.collectivebearings.com

LinkedIn: http://www.linkedin.com/company/collective-bearings

Gesamtkatalog
Präzisionsplanetengetriebe
complete catalogue
precision planetary gear boxes

Kraft und Präzision: Zwei Worte ein Name - Neugart

Wir freuen uns sehr, Ihnen heute die aktuelle Auflage unseres Komplettkataloges vorstellen zu dürfen.

Unter dem Motto "Kraft und Präzision" haben wir auf knapp 100 Seiten unser gesamtes Getriebeprogramm vereint. Klare Strukturen und einfache Navigation sollen Ihnen helfen, immer sofort das gewünschte zu finden.

Besonderes Highlight dieser Auflage ist sicherlich die Neuheit PLN. Das neue Präzisionsgetriebe mit größter Flexibilität.

Wir haben nun insgesamt sechs verschiedene Planetengetriebebaureihen für die Bereiche High Performance, Präzision und Economy.

Ebenfalls bieten wir Ihnen Sondergetriebe und die Fertigung kundenspezifischer Verzahnungsteile an.

Dieses breite Produktspektrum spricht für sich.

Doch überzeugen Sie sich selbst.

power and precision: two words one name - Neugart

We are proud to present today the current edition of our complete catalogue.

Under the heading "Power and Precision" we have united our entire range of gears on nearly 100 pages. Clear structures and simple navigation should help you always quickly find what you are looking for.

A special highlight of this edition is certainly the new PLN. The new precision gearbox with greatest flexibility.

We now have a total of six different planetary gear model series, for the areas of high performance, precision and economy.

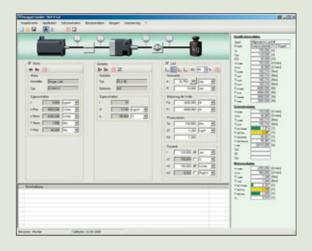
We also offer special gearboxes and the manufacture of customised gearing parts.

This broad product spectrum speaks for itself.

But look for yourself

Bernd Neugart **V** geschäftsführender Gesellschafter managing partner

Thomas Herr geschäftsführender Gesellschafter managing partner



Neugart Highlights

NCP, die Auslegungssoftware für den kompletten Antriebsstrang

Mit Hilfe von NCP kann der komplette Antriebsstrang Last - Getriebe - Motor ausgelegt werden. Durch Eingabe der Lastdaten berechnet das System das ausgesuchte Getriebe. Aufgrund der intiuitiven, einfachen Benutzeroberfläche im "Look and Feel" Design ist ein langes Einarbeiten überflüssig. Zusätzlich stehen dem User unterschiedliche Lastverläufe zur Verfügung, welche individuell modifizierbar sind. Mit über 4.000 Motorendaten stehen dem Benutzer nahezu alle gängigen Motoren zur Auswahl. Die komplette Software steht kostenlos unter www.neugart.de als Download zur Verfügung.

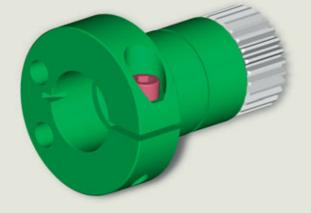
NCP, the software for power train design

NCP enables the design of a complete power train, load - transmission - motor. Based on an input of load data, the system will perform calculations for the selected transmission. With its "Look-and-Feel" design, the straightforward, intuitive user interface facilitates on-the-job training. In addition, the user is provided with a variety of customizable load curves. With more than 4000 motor data records, users may choose between virtually all currently available motors. The complete software will be available as a free download at www.neugart.de in December.

Neugart Highlights

gehonte Verzahnungsteile

Nach dem Härten werden die Verzahnungsteile gehont. Die Vorteile von gehonten Verzahnungsteilen:

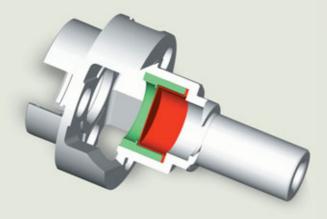

- · größere Präzision
- · reibungs- und geräuscharmer Betrieb
- · höhere Belastbarkeit
- Abnutzungsverhinderung

Das Schmiermittel wird nicht durch Verschleißpartikel verunreinigt. Das Verdrehspiel vergrößert sich während der Lebensdauer des Getriebes so gut wie nicht.

precision honed gears

Neugart gears are hardened and honed after hardening. Advantages of honed gears:

- · increased precision
- · smoother, low noise run
- · increased load ability
- eliminates wear in hence no lubricant contamination with wear particles and virtually no backlash increase during the gearbox life.

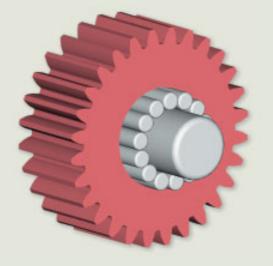

PCS-2 Präzisionsspannsystem

Das neue PCS-2 (Precision Clamping System) verbindet den Klemmring und das Ritzel zu einer Einheit. Daraus ergeben sich einige Vorteile. Zum einem kann nun der Klemmring bei der Montage sich nicht verdrehen oder herabfallen. Zum anderen konnte das übertragbare Drehmoment der Klemmverbindung durch eine besondere Ausgestaltung des Spannsystems nochmals etwas erhöht werden, sodass dem Kunden zukünftig noch mehr Sicherheitsreserven zur Verfügung stehen. Ebenfalls konnte die Klemmgenauigkeit durch besondere konstruktive Maßnahmen nochmals gesteigert werden, sodass die Geräuschentwicklung der Getriebe reduziert werden konnte. Die Trägheitsmomente und die Baulänge haben sich im Vergleich zum herkömmlichen PCS-System nicht verändert. Die Wuchtgüte entspricht ebenfalls dem des alten PCS-Systems.

PCS-2 Precision Clamping System

The new PCS-2 (Precision Clamping System) combines the clamping ring and the pinion to one unit. This results in several advantages. Firstly the clamping ring can now no longer twist or fall during assembly. Secondly it was possible to slightly increase the transferable torque of the clamping connection by means of a special clamping system design, providing the customer with even more back-up power. Likewise it was possible to improve the clamping accuracy by means of special constructive measures, which resulted in lower noise development at the gearbox. The moment of inertia and the overall length are still the same as in the customary PCS system. The balancing quality is also equal to that of the old PCS system.

Neugart Highlights



NIEC®-System

Durch das NIEC®-System (NIEC = Neugart Integrated Expansion Chamber) wird der Druckanstieg innerhalb des Getriebes unterbunden, wodurch die Lebensdauer der Dichtung erhöht wird. Damit könne höhere Drehzahlen und Drehmomente zugelassen werden. Außerdem erlaubt das patentierte NIEC®-System längere Wartungsintervalle. Das NIEC®-System ist eine Standardkomponente der HP Baureihe, sowie als Option in der Präzisionsbaureihe erhältlich.

NIEC®-system

Neugart Integrated Expansion Chamber - virtually eliminates pressure rise, hence increasing seal life and allowing high input speeds. Neugart gear heads can run at higher speeds, higher rated torques and also withstand longer maintenance intervals by using the patented NIEC®-system. The NIEC®-system is a standard feature in the HP- series gearhead and optional with the Precision series.

vollnadellige Lagerung

Bei allen Standardplanetengetrieben werden die Planetenräder mit vollnadeliger Lagerung ausgestattet.

Daraus resultieren eine höhere Belastbarkeit, eine höhere Drehmomentleistung sowie eine bedeutend längere Lebensdauer vom mehr als 30.000 Stunden.

full needle planet bearings

Planet gears are supported by high density "full needle bearings". This design feature is standard on all Neugart gearheads. This results in increased load ability and torque rating as well as a substantial increased life in excess of 30 000 hrs.

contents

Spielarmes Planetengetriebe low backlash planetary gear box

Für absolute Präzision Seite 5 precision at highest level page 5

Spielarmes Winkelplanetengetriebe low backlash angle gear box

WPLS

Das Winkelgetriebe Seite 17 the angular gear box page 17

Spielarmes Planetengetriebe low backlash planetary gear box

PLE

Die Economy-Alternative zur PLN-Baureihe Seite 29 the economy alternative to the PLN-line page 29

Spielarmes Winkelplanetengetriebe low backlash angle gear box

WPLE

Das Winkelgetriebe der PLE-Baureihe Seite 47 the angular gear box of PLE-line page 47

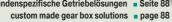
Spielarmes Economy Flanschgetriebe low backlash economy flange gear box

PLFE

Kompakte Wirtschaftlichkeit • Seite 63 compact efficiency page 63

High Performance PLF HP

Hohe Steifigkeit mit hohen Leistungsdaten und kurzer Bauform Seite 73


high stiffness with high performance data and

short construction page 73

Sondergetriebe custom made gear boxes

Kundenspezifische Getriebelösungen Seite 88

Verzahnungsteile custom made toothings

in vielfältiger Ausführung
Seite 90 in various specifications • page 90

Die Winkellösungen der Präzisionsgetriebe

geringes Verdrehspiel

- hohe Abtriebsdrehmomente
- patentiertes NIEC® als Option
- patentiertes PCS®
- hoher Wirkungsgrad (97%)
- gehonte Verzahnung
- 11 Übersetzungen i=4,...,100
- geringes Geräusch (< 67 dB(A))
- hohe Qualität (ISO 9001)
- beliebige Einbaulage
- einfacher Motoranbau
- Lebensdauerschmierung
- weitere Optionen
- Laufrichtung siehe Seite 27

WPLS - line

the angular solution for precision gear boxes

Die WPLS-Baureihe ist das Präzisions-Winkel planetengetriebe. Diese Winkelgetriebeserie wurde speziell für platzsparende Einbaumöglichkeiten in rechtwinkliger Lage der Motor / Getriebekombinationen entwickelt.

The WPLS series is the precision angle planetary gear. This angle gear series was designed especially for space-saving installation possibilities in right-angular position of the motor/gear combination.

- low backlash
- high output torque
- patented NIEC® as an option
- patented PCS®
- high efficiency (97%)
- honed toothings
- 11 ratios i=4,...,100
- low noise (< 67 dB(A))
- high quality (ISO 9001)
- any mounting position
- easy motor mounting
- life time lubrication
- more options
- direction of rotation see page 27

	technische Daten technical data	Seite 18 page 18
②	Abmessungen dimensions	Seite 21 page 21
③	Optionen options	Seite 22 page 22
4	Motoranbaumöglichkeiten possible motor mounting	Seite 23 page 23
(5)	Schnittdarstellung sectional drawing	Seite 27 page 27
6	Bestellbezeichnung ordering code	Seite 28 page 28
•	Getriebeauswahl gearhead sizing/selection	Seite 82 page 83
3	Einheitenumrechnung conversion table	Seite 86 page 87
©	CAD-Zeichnungen, Maßblätter CAD drawings, dimension sheets	www.neugart.de www.neugart.de
1	Auslegung/Berechnung dimensioning/calculation	NCP Software NCP Software

WPLS - line

technical data

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	i ⁽¹⁾	Z (2)
			40	64	165	465	1200	4	
			50	80	210	585	1500	5	
			37	62	148	450	1000	8	'
			27	45	125	305	630	10	
			77	120	260	910	1800	16	0 6 0 5
Abtriebsdrehmoment T _{2N} ⁽³⁾⁽⁵⁾	nominal output torque $T_{2N}^{(3)(5)}$	Nm	77	110	260	910	1800	20	
12N ****	12N		68	110	210	780	1800	25	
			77	120	20 260 910	1800	32	2	
			68	110	210	780	1800	40	
			37	62	148	450	1000	64	
			27	45	125	305	630	100	

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	i ⁽¹⁾	Z ⁽²⁾
			64	102	264	744	1920	4	
			80	128	336	936	2400	5	1
			59	99	237	720	1600 1008 2880	8	
			43	72	200	488		10	
			123	192	416	1456	2880	16	
max. Abtriebsmoment(3)(5)(8)	max. output torque(3)(5)(8)	Nm	123	176	416	1456	2880	20	
			109	176	336	1248	2880	25	
		123 192 416 1456	2880	32	2				
			109	176	336	1248	2880	40	
			59	99	237	720	1600	64	
			43	72	200	488	1008	100	

Serie	line		WPLS	Z ⁽²⁾
Lebensdauer	lifetime	h	20.000	
Lebensdauer bei T _{2N} x 0,88	lifetime at T _{2N} x 0,88	"	30.000	
Not-Aus Moment ⁽⁶⁾	emergency stop ⁽⁶⁾	Nm	2 - faches $T_{2N}/2$ - times of T_{2N}	
Wirkungagrad bai Valllagt(7)	officiona with full load(7)	%	97	1
Wirkungsgrad bei Volllast ⁽⁷⁾	efficiency with full load ⁽⁷⁾	90	94	2
Betriebstemperatur min.(4)	min. operating temp.(4)	- °C	-25	
Betriebstemperatur max.(4)	max. operating temp.(4)		+100	
Schutzart	degree of protection		IP 65	
Schmierung	lubrication		Lebensdauer-Schmierung /life lubrication	
Einbaulage	mounting position		beliebig /any	
Motorflansch- genauigkeit	motor flange precision		DIN 42955-R	

- $^{(1)}$ Übersetzungen ($i=n_{an}/n_{ab}$)
- (2) Anzahl Getriebestufen
- (3) die Angaben beziehen sich auf eine Abtriebswellendrehzahl von n₂=100min⁻¹ und Anwendungsfaktor K_A=1 sowie S1-Betriebsart für elektrische Maschinen und T=30°C
- (4) bezogen auf die Mitte der Gehäuseoberfläche
- (5) abhängig vom jeweiligen Motorwellendurchmesser
- (6) 1000-mal zulässig
- (7) übersetzungsabhängig
- (8) zulässig für 30.000 Umdrehungen der Abtriebswelle; siehe Seite 84
- ⁽¹⁾ ratios($i=n_{an}/n_{ab}$)
- (2) number of stages
- $^{(3)}$ these values refer to a speed of the output shaft of n_2 =100min⁻¹ on duty cycle K_A=1 and S1-mode for electrical machines and T=30°C
- (4) refering to the middle of the body surface
- (5) depends on the motor shaft diameter
- (6) allowed 1000 times
- (7) depends on ratio
- (8) allowable for 30.000 revolutions at the output shaft; see page 85

WPLS - line

technische Daten

technical data

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	Z (2)
Vardrahanial	bookloob	aramin	< 5	< 5	< 5	< 5	< 5	1
Verdrehspiel	backlash	arcmin	< 7	< 7	< 7	< 7	< 7	2
Fr _{max.} für 20.000 h ⁽³⁾⁽⁴⁾	Fr _{max.} for 20.000 h ⁽³⁾⁽⁴⁾		3300	4300	4800	9000	13300	
Fa _{max.} für 20.000 h ⁽³⁾⁽⁴⁾	Fa _{max.} for 20.000 h ⁽³⁾⁽⁴⁾] _N	4700	6400	8000	15000	21000	
Fr _{max.} für 30.000 h ⁽³⁾⁽⁴⁾	Fr _{max.} for 30.000 h ⁽³⁾⁽⁴⁾	N	3000	3900	4300	8200	12000	
Fa _{max.} für 30.000 h ⁽³⁾⁽⁴⁾	Fa _{max.} for 30.000 h ⁽³⁾⁽⁴⁾		4100	5700	7100	13300	18500	
Vordrobatoifiakoit	torsional stiffness	Nm /	4	6	15	32	100	1
Verdrehsteifigkeit	torsional stillness	arcmin	7	10	22	46	140	2
Gewicht	weight	lea.	4,0	7,3	13,5	26,5	50,0	1
Gewicht	wicht weight kg	l kg	4,7	8,7	16,0	29,6	61,0	2
Laufgeräusch ⁽⁵⁾	running noise(5)	dB(A)	72	73	76	78	78	
max. Antriebsdrehzahl ⁽⁶⁾	max. input speed ⁽⁶⁾	min ⁻¹	8000	7000	6000	4500	4000	

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	i ⁽¹⁾
			3250	3000	2150	1150	700	4
			3400	3150	2200	1200	700	5
			3500	3300	3200	2000	1300	8
			3500	3300	3200	2800	1800	10
	max. middle input speed at 50% T_{2N} and $S1^{(6)(7)}$	min ⁻¹	3500	3300	3200	1700	1200	16
max. mittlere Antriebsdreh- zahl bei 50% T _{2N} und S1 ⁽⁶⁾⁽⁷⁾			min ⁻¹	3500	3300	3200	2000	1350
Zam ber 50 % 12Nama 61			3500	3300	3200	2450	1550	25
			3500	3300	3200	2700	1800	32
			3500	3300	3200	3000	1950	40
			3500	3300	3200	3000	2500	64
			3500	3300	3200	3000	2500	100

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	i ⁽¹⁾
			2250	2100	1350	700	400	4
			2300	2150	1350	700	400	5
			3500	3300	2450	1250	850	8
			3500	3300	3150	1900	1300	10
max. mittlere Antriebs-		min ⁻¹	3350	3150	2250	1000	750	16
drehzahl bei 100% T _{2N} und	max. middle input speed at $100\% T_{2N}$ and $S1^{(6)(7)}$		min ⁻¹	3500	3300	2650	1200	850
S1 ⁽⁶⁾⁽⁷⁾	10070 T _{2N} and GT		3500	3300	3200	1600	1000	25
			3500	3300	3200	1750	1250	32
			3500	3300	3200	2250	1400	40
			3500	3300	3200	3000	2200	64
			3500	3300	3200	3000	2500	100

- $^{(1)}$ Übersetzungen ($i=n_{an}/n_{ab}$)
- (2) Anzahl Getriebestufen
- $^{(3)}\,$ die Angaben beziehen sich auf eine Abtriebswellendrehzahl von n_2 =100min⁻¹ und Anwendungsfaktor K_A =1 sowie S1-Betriebsart für elektrische Maschinen und T=30°C
- (4) bezogen auf die Mitte der Abtriebswelle
- (5) Schalldruckpegel in 1 m Abstand; gemessen bei einer Antriebsdrehzahl von n₁=3000min⁻¹ ohne Last; i=5
- (6) zulässige Betriebstemperaturen dürfen nicht überschritten werden; andere Drehzahlen auf Anfrage
- (7) Definition siehe Seite 86

- ⁽¹⁾ ratios($i=n_{an}/n_{ab}$)
- (2) number of stages
- $^{(3)}$ these values refer to a speed of the output shaft of n_2 =100min⁻¹ on duty cycle K_A=1 and S1-mode for electrical machines and T=30°C
- $^{\rm (4)}\,$ half way along the output shaft
- $^{(5)}$ sound pressure level; distance 1m; measured on idle running with an input speed of n₁=3000min⁻¹; i=5
- (6) allowed operating temperature must be kept; other input speeds on inquiry
- (7) definition see page 87

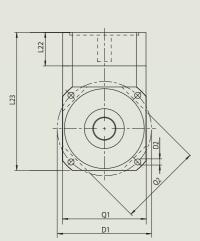
technische Daten

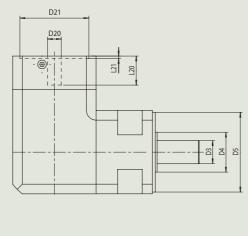
WPLS - line

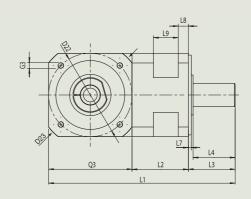
Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	i ⁽¹⁾
			0,61	1,91	5,0	19,4	116	4
			0,57	1,85	4,7	17,5	109	5
			0,52	1,79	4,6	15,9	102	8
			0,50	1,73	4,5	15,5	100	10
			0,61	1,91	5,0	19,4	45	16
Trägheitsmoment ⁽²⁾	inertia ⁽²⁾	kgcm ²	0,58	1,91	4,7	17,5	38	20
			0,57	1,85	4,7	17,5	38	25
			0,52	1,79	4,6	15,9	31	32
			0,52	1,79	4,6	15,9	31	40
			0,52	1,79	4,6	15,9	31	64
			0,50	1,73	4,5	15,5	29	100

 $^{^{(1)}}$ Übersetzungen (i= n_{an}/n_{ab})

⁽²⁾ das Trägheitsmoment bezieht sich auf die Antriebswelle und auf Standardmotorwellendurchmesser D20


 $^{^{(1)}}$ ratios(i= n_{an}/n_{ab})


⁽²⁾ the moment of inertia relates to the input shaft and to standard motor shaft diameter D20


WPLS - line

Abmessungen

dimensions

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	Z (2)
Alle Maße in mm	all dimensions in mm							
L1 Cocomtlänge	I 1 averall length		164,5	200,5	257	337	435,5	1
L1 Gesamtlänge	L1 overall length		188	229	290,5	378	449	2
100-6	I O le a di i la in adh		62,5	69	77,5	110	121,5	1
L2 Gehäuselänge	L2 body length		86	97,5	111	151	169	2
L23 Gesamthöhe ⁽³⁾	L23 overall hight ⁽³⁾		128	156	190	225	303	1
L23 Gesammone ¹⁹	L23 Overall Highton		128	156	190	225	303	2
Abtrieb	output							
D3 Wellendurchmesser	D3 shaft diameter	k6	19	22	32	40	55	
L3 Wellenlänge Abtrieb	L3 shaft length from output		32	41,5	64,5	87	90	
D5 Zentrierung	D5 centering	h7	60	80	110	130	160	1
D1 Flanschlochkreis	D1 flange hole circle		75	100	130	165	215	1
D2 Anschraubbohrung	D2 mounting bore	4x	5,5	6,5	8,5	11	13,5	1
Q1 Getriebequerschnitt	Q1 gear box section		70	90	115	140	190	1
D4 Wellenansatz	D4 shaft root		32,5	37,5	42,5	62,5	77,5	1
L4 Wellenl. bis Bund	L4 shaft length from spigot]	28	36	58	80	82	1
L7 Zentrierbund	L7 spigot depth]	3	3	4	5	6	1
L8 Flanschdicke	L8 flange thickness]	7	8	14	20	20	1
L9 Aussparungsbreite	L9 recess width		23	30	34	52	52	
Q2 Aussparung	Q2 recess		64	87	115	140	190	
Antrieb	input							1
D20 Bohrung ⁽¹⁾⁽⁴⁾	D20 pinion bore ⁽¹⁾⁽⁴⁾]	11	14	19	24	32	1
L20 Wellenlänge Motor(3)	L20 motor shaft length ⁽³⁾		23	30	40	50	60	
D21 Zentr. Ø für Motor ⁽¹⁾	D21 center bore for motor ⁽¹⁾		60	80	95	130	180	
D22 Lochkreis ⁽¹⁾	D22 hole circle ⁽¹⁾]	75	100	115	165	215	1
D23 Diagonalmaß ⁽¹⁾	D23 diagonal dimension ⁽¹⁾	mm	92	116	145	185	240	
G3 Anschraubgewinde x Tiefe ⁽¹⁾	G3 mounting thread x depth ⁽¹⁾	4x	M5x12	M6x15	M8x20	M10x25	M12x25	
L21 Zentrierung Antrieb	L21 motor location depth		3	3,5	3,5	4	5	
Q3 Deckelquerschnitt	Q3 face section		70	90	115	140	190	
L22 Motorflanschlänge(3)	L22 motor flange length(3)		29,5	40	46	64,5	73	

⁽¹⁾ je nach Motor andere Maße, siehe Seite 23

⁽²⁾ Anzahl Getriebestufen

⁽³⁾ Bei längeren Motorwellen L20 verlängert sich die Motorflanschlänge L22 und die Gesamthöhe L23

⁽⁴⁾ für Wellenpassung: j6 ; k6

⁽¹⁾ dimensions refer to the mounted motor-type, see page 23

⁽²⁾ number of stages

⁽³⁾ for longer motor shafts L20 applies: The measure motor flange length L22 and the overall hight L23 will be lengthen

⁽⁴⁾ for shaft fit: j6; k6

WPLS - line

Optionen

options

OP 2:	Motoranbau Abmessungen Seite 23	OP 2:	motor mounting dimensions page 23
OP 3:	Gehäusemontage (1) Abmessungen Seite 24	OP 3:	case mounting (1) dimensions page 24
OP 4:	Fußplattenmontage (1) Abmessungen Seite 25	OP 4:	foot mounting ⁽¹⁾ dimensions page 25
OP 5:	Zahnwellenverbindung (1) Abmessungen Seite 26	OP 5:	spline shaft ⁽¹⁾ dimensions page 26
OP 7:	Abtriebswelle mit Paßfeder DIN 6885 T1 ⁽¹⁾ Abmessungen Seite 26	OP 7:	output shaft with key DIN 6885 T1 (1) dimensions page 26
OP 8:	Sonderabtriebswelle (1) Abmessungen Seite 26	OP 8:	special shaft ⁽¹⁾ dimensions page 26
OP 10:	NIEC*-System (1)	OP 10:	NIEC®-system (1)

weitere Optionen auf Anfrage

other options on inquiry

(1) auf Anfrage

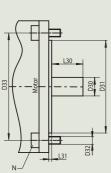
OP 12: ATEX (1)

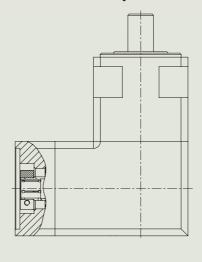
Seite 23

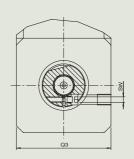
(1) on inquiry

OP 12: ATEX (1)

page 23


Optionen


WPLS - line


options

OP 2: Motoranbaumöglichkeiten

OP 2: possible motor mounting

N-√								
Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	Z (2)
D30 Motorwellendurch- messer ⁽¹⁾⁽⁵⁾	D30 motor shaft diameter ⁽¹⁾⁽⁵⁾	mm	8/9/9,525/ 10/11/12/ 14	9,525/10/11/ 12/12,7/14/ 16/19	11/12,7/14/ 15,87/16/19/ 22/24	19/24/28/ 32/35	24/28/32/ 35/38/42/ 48	
L30 min. Motorwellen- länge ⁽¹⁾	L30 min. motor shaft length ⁽¹⁾		16	19	21	26	30	
D31 Zentrierdurchmes- ser ⁽³⁾	D31 motor spigot ⁽³⁾		beliebig/any	beliebig/any	beliebig/any	beliebig/any	beliebig/any	
D33 Lochkreisdurchmesser ⁽³⁾	D33 hole circle diameter ⁽³⁾		beliebig/any	beliebig/any	beliebig/any	beliebig/any	beliebig/any	
Motorbauform ⁽¹⁾	motor type ⁽¹⁾		B5	B5	B5	B5	B5	
D32 Bohrung ⁽³⁾	D32 pinion bore ⁽³⁾		beliebig/any	beliebig/any	beliebig/any	beliebig/any	beliebig/any	
N Anzahl Bohrungen	N numbers of mounting bores		4	4	4	4	4	
L31 Zentrierlänge	L31 spigot depth		beliebig/any	beliebig/any	beliebig/any	beliebig/any	beliebig/any	
Q3 Flanschquerschnitt(1)	Q3 flange section(1)		70	90	115	140	190	
max. Motorgewicht(4)	max. motor weight ⁽⁴⁾	kg	10	15	34	50	75	
D30 Motorwellendurch- messer max.	D30 motor shaft diameter max.	mm	14	19	24	35	48	
Drehm. Spannschraube	torque clamping screw	Nm	4,5	9,5	16,5	40	75	
SW Schlüsselweite	SW wrench width	mm	3	4	5	6	8	

⁽¹⁾ andere Abmessungen auf Anfrage

OP 12: ATEX

geeignet nach ATEX 94/9/EG für Gruppe II Kategorie 2D/2G/3D/3G Temperaturklasse: T4 X

Leistungsdaten ändern sich. Bitte separates Maßblatt anfordern!

OP 12: ATEX

qualified after ATEX 94/9 EG for group II category 2D/2G/3D/3G temperature class: T4 X

power data will change ask for separate data sheet!

⁽²⁾ Anzahl Getriebestufen

⁽³⁾ innerhalb der Flanschabmessungen

⁽⁴⁾ bei horizontaler und stationärer Einbaulage

⁽⁵⁾ Wellenpassung: j6; k6

⁽¹⁾ other dimensions on inquiry

⁽²⁾ number of stages

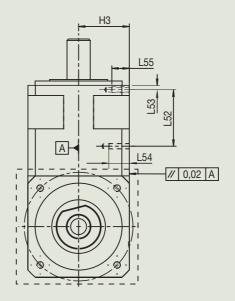
 $^{^{(3)}}$ if possible with the given flange dimensions

⁽⁴⁾ refered to horizontal and stationary mounting

⁽⁵⁾ shaft fit: j6; k6

WPLS - line

Optionen


options

OP 3: Gehäusemontage

OP 3: case mounting

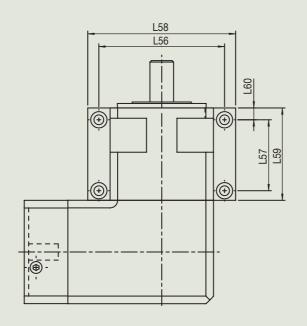
Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	Z (1)
G6 Anschraubgewinde	G6 mounting thread		M6	M8	M8	M8	M10	
L50 Gewindeabstand (Antrieb)	L50 mounting thread distance (input)		52	60	78	108	132	
L51 Gewindeabstand (Abtrieb)	L51 mounting thread distance (output)		13,5	24	71	92	122	
L54 Gewindelänge (Antrieb)	L54 length of mounting thread (input)		12	16	15	16	20	
L52 Abstand d. Gewinde-	L52 distance of mounting		35	40	56	79	80	1
bohrungen	threads	mm	51,5	63,5	90	120	128	2
L53 Abstand von Gehäuseende	L53 distance from gear box		6	8	8	10	10	
L55 Gewindelänge (Abtrieb)	L55 length of mounting thread (output)		5,5	10	16	16	20	
H3 Abstand Welle/Auflage- fläche	H3 distance shaft / locating surface		34	44	56,5	69,5	93	

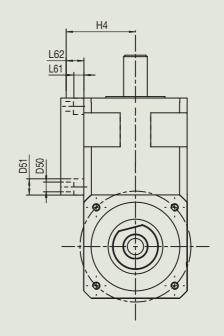
⁻⁻⁻ je nach Motorquerschnitt kann der Flanschquerschnitt größer als der Getriebequerschnitt sein

⁽¹⁾ Anzahl Getriebestufen

⁻⁻⁻ refering to the motor section the flange section can be bigger than the gear box section

⁽¹⁾ number of stages


WPLS - line


Optionen

options

OP 4: Fußplattenmontage

OP 4: foot mounting

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190	Z (1)
D50 Bohrung	D50 pinion bore		6,6	9	9	9	11	
D51 Bohrung	D51 pinion bore		11	15	15	15	18	
L61 Tiefe der Senkung	L61 depth of countersunk		6,8	10,5	10,5	10,5	11	
L62 Plattendicke	L62 thickness of plate		12	15	15	15	18	
H4 Abstand Welle/Auflage- fläche	H4 distance shaft / locating surface		46	59	71,5	84,5	111	
L58 Plattenbreite	L58 widthness of plate		100	130	155	185	240	
L56 Bohrungsabstand (Breite)	L56 distance of bores (widthness)	mm	84	110	135	165	216	
L60 Abstand Gehäuse/ Bohrung	L60 distance housing/bore		8	10	10	10	12	
L57 Bohrungsabstand	L57 distance of bores		46,5	49	57,5	82	97,5	1
(Länge)	(length)		70	77,5	91,5	123	145	2
LEO Diattaniana	LEO langth of plate		62,5	69	77,5	102	121,5	1
L59 Plattenlänge	L59 length of plate		86	97,5	111	143	169	2

⁽¹⁾ Anzahl Getriebestufen

⁽¹⁾ number of stages

WPLS - line

Optionen

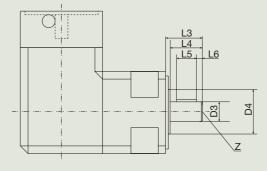
options

OP 5: Zahnwellenverbindung (4)

OP 5: spline shaft (4)

Baugröße	Zahnwellenverbindung	Verzahnungsbreite
size	spline shaft	tooth width
WPLS 70	DIN 5480 - W 19 x 0,8 x 30 x 22 x 7 m	15
WPLS 90	DIN 5480 - W 22 x 0,8 x 30 x 26 x 7 m	21
WPLS 115	DIN 5480 - W 32 x 1,25 x 30 x 24 x 7 m	42
WPLS 142	DIN 5480 - W 40 x 1,25 x 30 x 30 x 7 m	65
WPLS 190	DIN 5480 - W 55 x 2 x 30 x 26 x 7 m	65

OP 7: Abtriebswelle mit Paßfeder DIN 6885 T1 (1)(4)

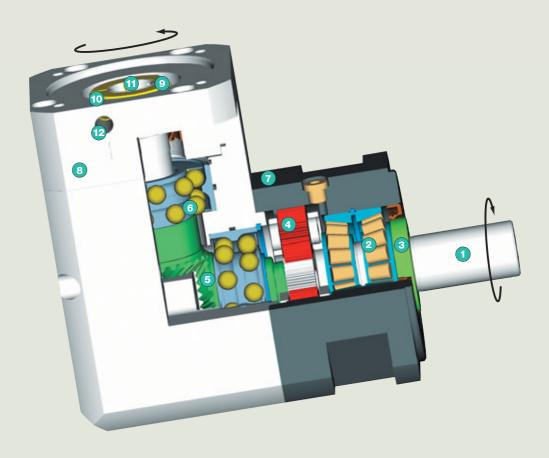

OP 7: output shaft with key DIN 6885 T1 (1)(4)

Baugröße	size		WPLS 70	WPLS 90	WPLS 115	WPLS 142	WPLS 190
Bezeichnung	title		A6 x 6 x 20	A6 x 6 x 28	A10 x 8 x 50	A12 x 8 x 65	A16 x 10 x 70
D3 [k6] Wellendurchmes- ser	D3 [k6] shaft diameter		19	22	32	40	55
L5 Passfederlänge	L5 key length	mm	20	28	50	65	70
L6 Abstand v. Wellenende	L6 distance from shaft end		4	4	4	8	6
Z Zentrierbohrung	Z centre bore		M6x16	M8x19	M12x28	M16x35	M20x42
max. Abtriebsmoment ⁽²⁾	max. output torque(2)	Nm	75	100	250	800	1400

OP 8: Sonderabtriebswelle (3)(4)

OP 8: special shaft (3)(4)

Wellendurchmesser	shaft diameter	D3	
Wellenl. bis Bund	shaft length from spigot	L4	
Wellenlänge Abtrieb	shaft length from output	L3	
Passfederlänge	key length	L5	
Abstand v. Wellenende	distance from shaft end	L6	
Paßfederbreite	key width	В	
Zentrierbohrung	centre bore	Z	


- (1) Skizze für Variablen siehe OP 8
- (2) nur bei schwellender Belastung
- (3) Seite kopieren und ausgefüllt zufaxen oder Skizze zu Anfrage beilegen
- (4) auf Anfrage

- (1) sketch for variables see OP 8
- (2) only for tumscent load
- (3) fax page with data or send sketch with your inquiry
- (4) on inquiry

Schnittdarstellung

WPLS - line

sectional drawing

Abtriebswelle aus Planetenträger und Abtriebswelle bestehende Hochleistungsbaugruppe

- 2 Abtriebswellenlager große vorgespannte Präzisionskegelrollenlager für Nullspiel der Antriebswelle
- zweckmäßige Doppellippendichtung, hält das Schmiermittel innerhalb und externe verunreinigende Substanzen außerhalb des Getriebes; IP 65 4 Planetenräder
- geradverzahnte Präzisions-Planetenräder mit optimierter Profilmodifikation und Balligkeit; einsatzgehärtet und gehont
- Kegelgetriebe Gehäuse mit präzisionsgefertigtem spiralbogenverzahntem Kegelrad, gehärtet und geläppt
- 6 Kegelgetriebelager vorgespannte doppelreihige Schrägkugellager

Dichtring

- 7 Gehäuse mit integriertem Hohlrad gehärtetes und durch Honen fertigbearbeitetes Hohlrad für hohe Belastbarkeit, minimalen Verschleiß und gleichbleibendes Verdrehspiel
- 8 Motoradapterplatte erlaubt die Anpassung des Getriebes an praktisch jeden Servomotor, gefertigt aus Aluminium für eine höhere Wärmeleitfähigkeit
- Klemmring ausgewuchteter Klemmring aus Stahl für hohe Drehzahlen und für starke Spannkräfte zur sicheren Übertragung von Drehmomenten
- 10 Klemmschraube hochbelastbare Stahlschraube mit spezieller niedriger Gewindesteigung für hohe Spannkräfte
- 11 PCS System patentiertes Präzisionsspannsystem mit mehreren geschlossenen Schlitzen - das zuverlässigste und genaueste System, das auf dem Markt angeboten wird
- Montagebohrung Zugangsbohrung für die Spannschraube

- 1 output shaft high strength one piece planet carrier & output shaft
- 2 output shaft bearing large high precision preloaded taper roller bearings for zero clearance
- 3 sealing ring dedicated double lip seal, keeps the lubricant inside, the external contaminant outside the gearbox; IP 65
- 4 planet gear precison zero helix angle gear with optimized profile modifications and crowning; case hardened and hard finished by honing
- bevel gear precision spiral bevel gear set case hardened and lapped
- 6 bevel gear bearing Zero clearance angular contact
- 7 housing with integrated ring gear ring gear case hardened and hard finished, honed for high load ability, minimum wear, consistent backlash
- 8 motor adapter plate allows to match up the gear head with virtually any servo motor, made of aluminum for enhanced thermal conductivity
- clamping ring balanced ring sutiable for high rpm, made of steel to allow high clamping forces for safe torque transfer
- 10 clamping screw high strength steel screw with special low pitch thread to generate a high clamping force
- 11 PCS System patented multiple closed slot Precision Clamping System - most reliable advanced system available today
- 12 assembly bore access bore for the clamping screw

WPLS - line ordering code

WPLS 115 - 100 / MOTOR - OP 3 + 5 + ...

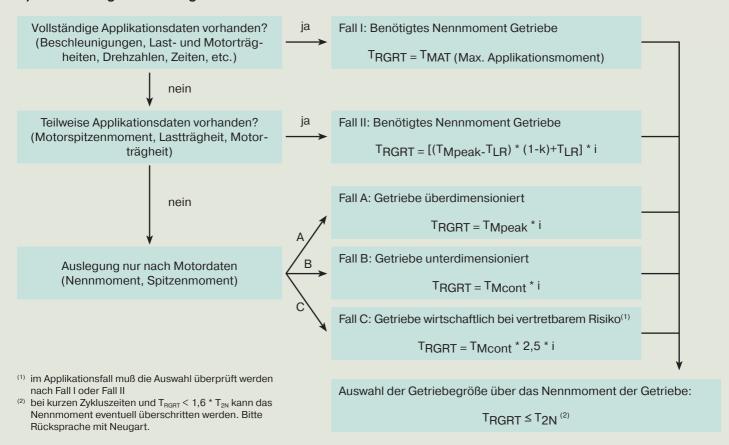
Getriebetyp / gear box size

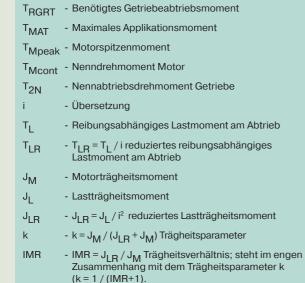
WPLS 70; WPLS 90; WPLS 115; WPLS 142; WPLS 190

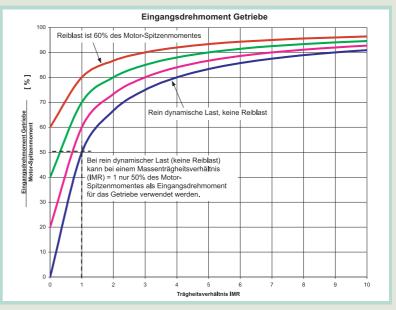
Übersetzung i / ratio i

1-stufig / 1-stage: 4; 5; 8; 10

2-stufig / 2-stage: 16; 20; 25; 32; 40; 64; 100


Motorbezeichnung motor designation (Herstellertyp) (manufacturer-type)

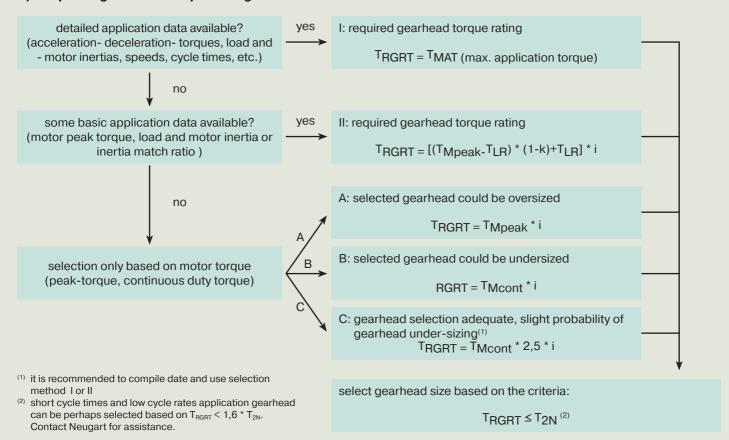

	Optionen	options
OP 2:	Motoranbau	motor mounting
OP 3:	Gehäusemontage	case mounting
OP 4:	Fußplattenmon- tage	foot mounting
OP 5:	Zahnwellen- verbindung	spline shaft
OP 7:	Abtriebswelle	output shaft
	mit Paßfeder	with key
	DIN 6885 T1	DIN 6885 T1
OP 8:	Sonderabtriebs- welle	special shaft
OP 10:	NIEC®-System	NIEC®-system
OP 12:	ATEX	ATEX

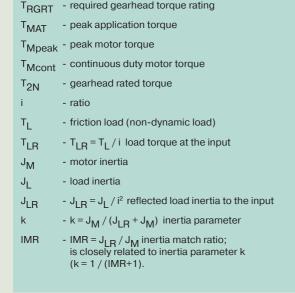

Getriebeauswahl

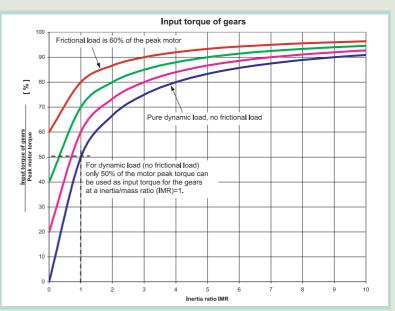
1) Berechnung des benötigten Getriebemomentes

2) Motoranbaumöglichkeit überprüfen

- Ist der Motorwellendurchmesser \leq dem größtmöglichem Hohlwellendurchmesser des Motorritzels?
- Ist das Motorgewicht zulässig?


3) Überprüfe die Axial- und Radialkräfte der Applikation für das ausgesuchte Getriebe


4) Überprüfe die Applikationsbedingungen – im Zweifelsfall bitte Neugart kontaktieren


- Ist die IP-Schutzklasse ausreichend?
- Wird die empfohlene Antriebsdrehzahl nicht überschritten?
- Wird die Betriebstemperatur des Getriebes nicht überschritten?

gearhead sizing/selection

1) required gearhead torque rating

2) check motor / selected gearhead geometrical compatibility

- motor shaft diameter ≤ max possible input pinion (sun-gear) bore?
- motor weight permissible / support required?

3) check output shaft radial and axial load ability / output shaft bearing life (if applicable)

4) check application / ambient conditions - In doubt please contact Neugart for assistance

- Is IP class adequate?
- Is mean input speed higher than the recommended?
- Check operating temperature, is higher than recommended?

Maximal übertragbares Abtriebsdrehmoment

Neugart Planetengetriebe sind bei T_{2N} (Nennmoment) für den dauerfesten Bereich ausgelegt, d.h. bleiben die Applikationsmomente immer unter dem Nennmoment, so ist keine Nachrechnung erforderlich.

Es ist jedoch möglich, bei kurzen Drehmomentspitzen oder langem Aussetzbetrieb höhere Applikationsmomente zu übertragen.

Zur Abschätzung dient dabei Abbildung 1.

Überhöhungsfaktor in Abhängigkeit von der Anzahl der Abtriebswellenumdrehungen

Abbildung 1

Das maximale Applikationsmoment darf dabei 1,6*T_{2N} nicht überschreiten.

Die Anzahl der Umdrehungen der Abtriebswelle bei maximalem Applikationsdrehmoment ist zu errechnen. Ist die Anzahl der Umdrehungen (Anz) größer als 15.000.000, so darf das Getriebe nur mit dem Nennmoment des Getriebes belastet werden. Ist die Anzahl der Umdrehungen kleiner als 15.000.000 so kann der Überhöhungsfaktor nach folgender Formel errechnet werden:

$$f = -0.1039* \ln \left(\frac{10^5}{30000} * No. \right) + 2.79$$

Wird f>1,6 dann wird f=1,6 gesetzt Wird f<1,0 dann wird f=1,0 gesetzt

Das maximal übertragbare Moment T_{2max} des Getriebes errechnet sich dann zu: $T_{2max} = f * T_{2N}$ Das maximale Applikationsmoment darf das errechnete maximale Abtriebsdrehmoment des Getriebes nicht überschreiten. $T_{2max} \leq T_{Applikation}$

Max. transferable output torque

At T_{2N} (nominal torque), Neugart's planetary gearboxes are designed for high-cycle operation, in other words if the application torques are always less than the nominal torque, no recalculation is necessary.

However, it is possible to transfer higher application torques in the case of short torque peaks or long periods of intermittent duty.

Figure 1 serves as guideline.

Increase factor depending on the number of output shaft rotations

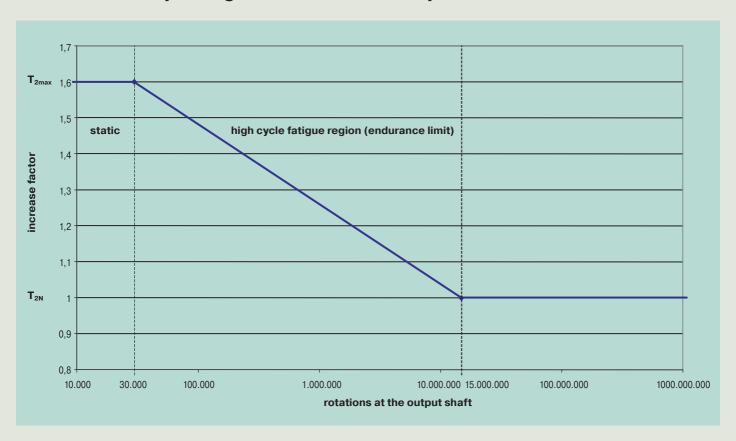


figure 1

The max. application torque must not exceed 1.6*T_{2N}.

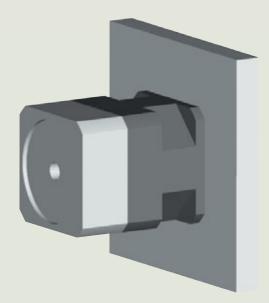
The number of rotations of the output shaft at the max. torque has to be calculated. If the number of rotations (no.) is larger than 15,000,000, the gearbox may only be subjected to the nominal torque of the gearbox. If the number of rotations is smaller than 15,000,000, the increase factor can be calculated by means of the following formula:

$$f = -0,1039* \ln \left(\frac{10^5}{30000} * No. \right) + 2,79$$

If f>1.6, f is set to f=1.6 If f<1.0, f is set to f=1.0

The max. transferable torque T_{2max} of the gearbox is then calculated by means of: $T_{2max} = f * T_2$ The max. application torque must not exceed the calculated max. output torque of the gearbox. $T_{2max} \leq T_{application}$

Thermische Auslegung für S1-Betrieb



Berechnung der mittleren Drehzahl:

$$n_m = \frac{n_1 \cdot t_1 + \dots + n_x \cdot t_x}{t_1 + \dots + t_x}$$

Annahmen für Umgebungsbedingungen:

- · Motor heizt das Getriebe nicht auf
- Plattengröße (quadratisch) = 2 x Getriebegröße
- · Plattenmaterial: Stahl
- · Konvektion wird nicht behindert (kein Gehäuse in direkter Umgebung um das Getriebe)
- Umgebungstemperatur: 30°C
- Plattenanschluss über Maschinenbett: einseitig (30°C)

Bei einem benötigtem Abtriebsdrehmoment von 100%:

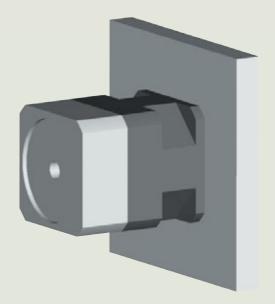
Ist n_m kleiner als die mittlere thermischen Drehzahl bei 100% Last, dann ist das Getriebe thermisch geeignet.

Bei einem benötigtem Abtriebsdrehmoment von 50%:

 $Ist \ n_m \ kleiner \ als \ die \ mittlere \ thermischen \ Drehzahl \ bei \ 50\% \ Last, \ dann \ ist \ das \ Getriebe \ thermisch \ geeignet.$

Bei ungünstigen Bedingungen bitte Drehzahlen reduzieren oder Rücksprache mit Neugart.

Einheitenumrechnung	1 mm	0.0394 in	
	1 N	0.225 lb _f	
	1 kg	2.205 lb	
	1 Nm	8.85 in lb	
	1 kgcm ²	8.85 x 10 ⁻⁴ in lb s ²	


thermal specifications for S1 operation

calculation of average speed:

$$n_m = \frac{n_1 \cdot t_1 + \dots + n_x \cdot t_x}{t_1 + \dots + t_x}$$

Assumed surrounding conditions:

- · Motor does not heat up the gearbox
- Plate size (square) = 2 x gearbox size
- · Plate material: Steel
- · Convection is not impaired (no housing in the direct proximity of the gearbox)
- Surrounding temperature: 30°C
- Plate connection on machine bed: one-sided (30°C)

In the case of a required output torque of 100%:

If n_m is less than the average thermal speed at 100% load, the gearbox is thermally suitable.

In the case of a required output torque of 50%:

If n_m is less than the average thermal speed at 50% load, the gearbox is thermally suitable.

If conditions are unfavourable, please reduce the speeds or consult Neugart.

conversion table	1 mm	0.0394 in	
	1 N	0.225 lb _f	
	1 kg	2.205 lb	
	1 Nm	8.85 in lb	
	1 kgcm ²	8.85 x 10 ⁻⁴ in lb s ²	

Neugart GmbH
Keltenstraße 16
D-77971 Kippenheim
Telefon +49 (0) 78 25/847-0
Telefax +49 (0) 78 25/847-2999
Internet www.neugart.de
E-Mail vertrieb@neugart.de